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ABSTRACT 

62910209: MAJOR: GEOINFORMATICS; M.Sc. (GEOINFORMATICS) 

KEYWORDS: Tree Height, Canopy Height Model, Digital Terrain Model, Digital 

Surface Model 

  LY MOT : TREE HEIGHT ESTIMATION USING FIELD 

MEASUREMENT AND LOW-COST UNMANNED AERIAL VEHICLE (UAV) 

AT PHNOM KULEN NATIONAL PARK OF CAMBODIA  . ADVISORY 

COMMITTEE: HONG SHU, , KITSANAI CHAROENJIT HAORAN ZHANG 2021. 

  

Tree height estimation is one of the most important parameters used to 

quantify timber resources. Among others it is used to evaluate the ecological and 

economic value of forest stand, to calculate the individual and number of stand 

volumes, and to estimate the forest inventory. In order to update information about 

forests. This helps local, regional, or national authorities to take decisions and manage 

the forest. 

Most tree estimations with Light Detection and Ranging (LiDAR) have 

been used successfully over the recent decades. In contrast to LiDAR, estimation of 

tree height derived Canopy height model (CHM) has been applied with low-cost UAV 

with acceptable accuracy which is used onboard GPS to obtain a high accuracy of 

CHM. 

This research aims to estimate, and evaluate tree height from high 

resolution images of low-cost UAVs. The influence of different flight attributes, point 

cloud densities, extraction methods, photogrammetry products, and point cloud 

classification are discussed. The estimation of tree height was performed by two 

extraction methods, photogrammetry product, and point cloud classification. Each 

was divided into five groups: CHM from the point could classifications, CHM from 

photogrammetry products-customized with georeferenced methods, CHM from 

photogrammetry products-defaults with georeferenced methods, CHM from 

photogrammetry products-defaults without georeferenced methods, and CHM from 

photogrammetry products- customized without georeferenced methods. Tree heights 

were obtained from the field with buffering distances of 0 cm, 50 cm, 100 cm, 150 

cm, and 200 cm. In total 50 measurements were taken and analyzed in the present 

study. 
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First, the results of tree height extraction were successfully taken from 

UAV data and point cloud classification. In contrast, photogrammetry products 

produced tree height estimation with extreme bias. In addition, high point cloud 

densities from 50 m flights provided good data to remove point cloud outliers. The 

highest R2 was 0.60. During 200 m flights, R2 of 0.50 was the highest. Additionally, 

sample paired t-test, tree height estimation, and ground data from 50 m flight were not 

statistically significant different.  

In sum, this proposed method is possible for open terrains less than 12 m. 

It is limited by the design of the pipe meters as the measurement of height and cashew 

leaves was challenging. Regarding the performances of tree height estimation from 

UAV and field measured, we proved that the workflow of UAV is faster and more 

effective than field measured which required less times and resources. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Statements and Significance of the Problems    

Tree height is one of the most important sources used to quantify timber 

resources. It is used to evaluate the ecological and economic value of forest stand. It 

has been used to compute the individual and number of stand volumes(S. Krause, T. G. 

M. Sanders, J.-P. Mund, & K. Greve, 2019b). Tree height plays an important role in the 

regeneration rate of forests and its pattern. It provides habitats for animals (M. F. Ramli 

& K. N. Tahar, 2020) and production to humans (Phalla et al., 2018). In its inventory, 

accurate information as the height of the tree and diameter at breast height (DBH) of 

tree height are very useful. The quantification of the DBH and tree height are possible 

to measure at the field (Moe, Owari, Furuya, & Hiroshima, 2020). However, field 

measurements of tree heights are difficult to derive high accuracy because of tall and 

dense canopies, and crowns (Larjavaara & Muller-Landau, 2013; Sibona et al., 2017). 

In addition, height measurement using laser range finder (forestry standard method), 

required times for observing the individual tree and limited for the large area 

(Zainuddin, Jaffri, Zainal, Ghazali, & Samad, 2016).        

 The development of new technologies in Remote Sensing (RS), has been used 

in various applications in forest investigation such as growth, quality prediction, and 

refined management. Satellite images can be used to determine forest parameters with 

high precision using an inversion regression model on a large scale. An application on 

individual trees is not suitable because the spatial resolution is in the range of several 

meters. In addition, weather conditions and dates for download can affect the accuracy 

of canopy height estimation (He, Yan, Chen, & Cheng, 2019). Two commonly used 

remote sensing techniques are airborne laser scanning (ALS) and digital aerial 

photogrammetry (Moe et al., 2020). Over the recent decades, the active remote sensing 

technique of ALS, uses light detection and ranging (LiDAR) sensors are possible to 

measure tree height from three-dimensional (3D) of vegetation canopy components. It 

includes sub-canopy topography which provides high accuracy of tree height and 

ground elevation comparable with field measurement (Ganz, Käber, & Adler, 2019; 

Krause et al., 2019b; Singh et al., 2018; Singh, Evans, Tan, & Nin, 2015). However, 
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the limitation of LiDAR data acquisition is expensive, which is challenging for forest 

management authorizes to access the data (He et al., 2019; Krause et al., 2019b; Moe 

et al., 2020).       

 The development of unmanned aerial vehicle (UAV) with a consumer-grade 

onboard camera allowed its to obtain high resolution image for a reasonable price, 

which provides a large new field of opportunities. Among others, these vehicles can be 

applied for estimating height with respect to ground surface. Canopy Height Model 

(CHM), high-resolution DTM, and photogrammetric point clouds are used to estimate 

individual tree heights (He et al., 2019). Low-cost UAV camera has been applied in 

various types of terrain to estimate tree heights (Zarco-Tejada, Díaz Varela, Angileri, 

& Loudjani, 2014). The applied UAV contained a consumer-grade RGB camera and a 

fixed-wing with 2 m wing span to collect data from 158 ha. The quantification of tree 

height was derived from high-resolution DSM and orthomosaic from Pix4D software. 

The estimation of crop height was done by close flight to object in order to improve the 

spatial resolution(Anthony, Elbaum, Lorenz, & Detweiler, 2014). Wider coverage 

fisheye lens sensor which is possible to create 3D terrain modelling and Phantom 2 

Vision UAV with FC200 wide angle lens camera which provides better accuracy 

compared to other fisheye lens (Zainuddin et al., 2016). In addition, low-cost UAVs are 

reliable to apply for estimating various canopy heights and its crowns such as Pinus 

Pinea plantation (Guerra et al., 2016), Pine tree (A. C. Birdal, Avdan, & Türk, 2017), 

Pinaceae and Taxodiaceae (Lim Ye et al., 2015), and Olive tree(Díaz-Varela, De la 

Rosa, León, & Zarco-Tejada, 2015). Low-cost UAV has been successfully applied to 

estimate tree height using SfM approach. Two methods commonly used for estimating 

tree height from SfM such as point cloud classify to derived CHM (Ganz et al., 2019; 

He et al., 2019; Jurjević, Liang, Gašparović, & Balenović, 2020; Wu, Johansen, Phinn, 

Robson, & Tu, 2020; Zainuddin et al., 2016) and photogrammetry software to generate 

CHM (Lim Ye et al., 2015; Panagiotidis, Abdollahnejad, Surovy, & Chiteculo, 2017; 

Zarco-Tejada et al., 2014). Tree height estimation using UAVs have to be considered 

the ground surface due to the UAV tree height provides average 0.4 m in height 

precision (Zainuddin et al., 2016). Tree height from UAV refers to the distance between 

ground to top of canopy which both point cloud classification and photogrammetry 

software are able to produce DTM and DSM. Different flight attribute produces 
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different Ground Sampling Distance (GSD). Islami et al. (2021) estimated canopy cover 

using UAV. They performed three flights by the altitudes of 80 m, 100 m and 120 m 

with overlaps of 80 % and side overlaps of 70 %. The flight in 100 m provided the best 

results. Kameyama and Sugiura (2020) proposed different flight attributes, overlap and 

side overlap to verify tree estimation: altitudes of 60 m, 80 m, 100 m, 120 m, 140 m, 

overlaps of 80%, 85%, 90%, and 95% and side overlaps of 80%, 85%, 90%, and 95%. 

The tree height estimation was lower than the actual height. Peng, Zhao, Chen, Chen, 

and Liu (2021) proposed different point cloud densities such as 12, 17, 28, 64, and 108 

points/m2 with coniferous forest, broad-leaved forest, and mixed coniferous and broad-

leaved forest. Tree height extraction from 12 points/m2 provides greater accuracy 

compared to other point cloud densities. Thus, UAV tree height estimation should 

consider method uses such as photogrammetry software products, point cloud density, 

interpolation methods, and feature extraction.  

 DJI Phantom 4 series has been successfully applied for estimating tree height. 

New version of DJI Phantom 4 real-time kinematics (RTK) provides direct geo-

referencing with accuracy of a few centimeters (Taddia, Stecchi, & Pellegrinelli, 2020). 

Moreover, it is also less GCPs needed.  

 Tree Height measurement obtains the vertical distance between the ground 

and the top of a tree. It provides useful information in the field of forest research. The 

accuracy, the time consumption, usage of resources, and common methods have been 

discussed. Canopy Height Model (CHM) represents tree height from 3D point cloud 

classifications between the top of canopy (Digital Surface Model-DSM) and bare 

ground (Digital Terrain Model-DTM). The most frequently method used to estimate 

tree height is airborne laser scanning, which provides very accurate 3D reconstruction 

of trees and forests. However, the cost is high compared to passive optical sensors. The 

accuracy of tree height estimation using low-cost unmanned aerial vehicle (UAV) from 

difference point cloud densities, flight attributes, overlapping, and type trees have been 

analyzed. This study focuses on estimating, comparing, and evaluating tree height by 

photogrammetric point clouds and UAV software, supported by fieldwork to increase 

the accuracy. 



 4 

1.2 Research Questions 

 Considering different flight attributes, is there any difference in height 

estimation upon the altitude?  

 How to choose the correct flight attribute for tree height estimation? 

 How does the accuracy of photogrammetry products perform in tree height 

estimation?  

 Extraction tree height from Canopy Height Model (CHM), which extraction 

methods (none-buffering and buffering) provide better accuracy?   

 How does the accuracy of field measurement validate the tree estimated?  

1.3 Research Objective 

     1. To extract tree height using very high resolution images from low-cost UAV  

     2. To assess the individual tree height estimation with field measurement 

1.4 Conceptual Framework 

This research would like to experiment on tree height extraction and analysis 

on the experimental results from UAV Images. Digital Terrain Model and Digital 

Surface Model were the main parameters used to identify the height of a tree. 

Conceptual framework of this research show in Figure 1.   

 

 

 

 

 

 

 

 

Figures 1 Conceptual Framework of Tree height Estimation in This Research 

1.5 Contributions to the Knowledge 

The research direction of this study is producing the appropriate method to 

generate tree height from UAV images. The experimental and analysis on the results of 

tree height extraction are the useful information and reference use for further study in 

UAV Images Image Processing 
DTM and DSM 

Generation 

Tree Height 

Extraction  

Assessment Tree 

Height Estimated   
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the tree height estimation. The methodology of this study is informative concepts for 

decreasing the field measurement and time consumption in tree height research. This 

study also possible to use with similar plantations and provides the acceptable result 

compare to ground data.  
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Overview of Photogrammetry 

 Triangulation technology is the basic principle used in photogrammetry. The 

line of sight is capturing pictures from at least two different locations then it is generated 

from each camera to a point on the object. The line of sight is sometimes called a ray 

because of its optical nature. It can be used mathematically to generate 3D coordinates 

of the point. Triangulation is the basis that theodolite has used to measure coordinates. 

It is similar to the two human eyes which work together to measure distances, depth 

perception (Awange & Kiema, 2019). Photogrammetry was a relatively old discipline 

historically, with the word "photogrammetry" being coined by Meydenbauer in 1893. 

The early stages of photogrammetry creation focused primarily on terrestrial surveys, 

but inaccessible objects such as mountains, expeditions, glaciers, and buildings were 

also considered. However, advances in computational and imaging technology have 

resulted in a paradigm change in photogrammetry over the years. This has completely 

changed the way of photogrammetric procedures, moving from traditional plane table 

photogrammetry (1851-1900) to analogue photogrammetry (1901-1950s), then 

analytical photogrammetry (1930-1980s), and finally optical (softcopy) 

photogrammetry (1990s-Present). In short, Photogrammetry has been used for about 

150 years. Photogrammetry has progressed from a strictly analog, optical-mechanical 

technique to computational approaches based on computer-assisted mathematical 

algorithm solutions, and finally to digital or softcopy photogrammetry based on digital 

imagery and computer vision. Photogrammetry is mostly concerned with obtaining 

accurate measurements of three-dimensional structures and surface characteristics from 

two-dimensional images. The application contains coordinates measurement, distances 

measurement, heights, coverage, size, planning of topographic maps, and produce of 

DEM and orthophoto. 

2.1.1 Photogrammetric Procedures   

 There are three different ways to derive photogrammetric output (Awange & 

Kiema, 2019): acquisition (analogue camera, photograph, scanner, digital sensor, and 

digital imagery), photogrammetric restitution (inner orientation, relative orientation, 



 7 

absolute orientation, aerial triangulation, and map compilation or orthoimages 

generation) and photogrammetric outputs (photogrammetric product, 3D coordinates, 

orthoimages, DEMs, surface, and maps).   

2.1.2 Data Acquisition  

 Analogue Frame Camera: the most common type of analogue camera used in 

aerial photogrammetry is the frame camera. Essentially, this is a metric sensor that 

operates from freezes/captures of a square region on the ground. It uses a typical format 

scale of 23 cm ×23 cm in most cases. The file base system is used by analogue frame 

cameras. The exposed film requires to be proposed the photograph. The high image 

accuracy of analog frame cameras is based on high geometric fidelity lenses with 

minimal lens distortion and application of film mounting tools to hold flat against the 

camera’s focus field at the time of exposure. Camera accessories are also incorporated 

to ensure the overall functionality of the analog sensor works well. 

 Digital Aerial Cameras: successful mapping past applications dating back to 

the 1920s using analogue frame cameras. Digital aerial cameras have experienced short 

time operation around the year 2000.   

 Photogrammetric Project Planning: before implementing aerial photography, 

the first method is applied to consider is designing for a photogrammetric project. 

Providing the area to be mapped so that the user can evaluate it and the 

photogrammetrist can determine the various project parameters, such as overlap and 

side overlap requirements, photographic scale, final map scale, and instruments to be 

used, in consultation with the client. Typically, a photogrammetric project focuses on 

3 steps: developing a flight plan (which must be followed when taking aerial 

photographs), preparing a ground control, field surveys (to ensure a high accuracy), and 

estimating costs. 

2.1.3 Photogrammetric Restitution 

 Photogrammetric Restitution: Photogrammetry's main goal is to obtain useful 

geometric and other forms of knowledge from observing and interpreting photographic 

imagery. To derive 3D geoinformation from the iconic 2D imagery, the aerial photos 

that have been collected must be further evaluated and interpreted. Classically, this has 

been achieved by the process of photogrammetric restitution. Conceptually, this 

includes simulating and inverting the main photographic process, which can be done 
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with a plane table, analogue, analytical, or digital photogrammetric technique. The 

basic classical photogrammetric workflow can be define such as interior orientation (to 

reconstruct the geometry or bundle rays which were derived from images measured 

through camera calibration and included the principal point's coordinates (xo, yo), the 

calibrated focal length (c), radial lens and tangential lens distortion elements, film 

deformation, atmospheric refraction and earth curvature), relative orientation (to 

constrain corresponding conjugate rays in order to clarify that they intersect uniquely 

in space in order to form a stereo model), absolute orientation (to overcome the stereo 

model both scale and height datum using ground control measured by GNSS in order 

to correct absolute orientation and generate orthoimages), and aerial triangulation (to 

identify the complete exterior orientation parameters of each image in the 

photogrammetric block which includes the (Xo, Yo, Zo) coordinates of the location from 

the camera over ground, also the camera attitude which determine through the rotations 

ω, φ, κ, and to estimate ground coordinates (X, Y, Z) of measured conjugate image 

points).   

2.1.4 Photogrammetric Output 

 Photogrammetric output is divided into three categories: photographic 

products (which are basically variants of single images or composites obtained from 

stereopairs), computational results (the DEM/DTM (DEM/DTM) is the most common 

method for representing height variations on the earth's surface), and maps. 

2.1.5 Unmanned Aerial Vehicle  

 Unmanned aerial vehicles (UAV) commonly known as drones have become 

a “hot” topic, due to its advances and applications in remote sensing and 

photogrammetry applications. It includes technology, security concerns, rules, and 

regulations globally (Singhal, Bansod, & Mathew, 2018). Its application can have a 

military or a civilian purpose. Various missions can be done with UAVs e.g., 

estimations of land size, surveying or corridors for roads and railroads, stockpile 

volume estimates, flooding, and coastal erosion assessment, construction information 

management, emergency preparation and handling, surveys in remote or undeveloped 

areas, and goods delivery (Traore, 2021).  
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2.1.6 UAV Timelines 

 Unmanned aerial vehicle (UAV) are unmanned and is controlled remotely by 

a pilot on the ground. This enables to build small UAVs. It overcomes the terrestrial 

system's usability, speed, and reliability limitations. In defense, unmanned aerial 

vehicles have been used for reconnaissance and war(Singhal et al., 2018). The project 

on discovery of autonomous mechanisms started with Pythagoras, and it's attributed to 

Archytas of Tarantas. Based on geometrical concepts, they build the first UAV in 425 

BC, and the mechanical bird possible to fly due to a mechanism placed in the stomach. 

In 1483, Leonardo Da Vinci had successfully designed an aircraft that was able to fly 

vertically. It is known as today’s helicopter ancestor. Later Mikhail Lomonosov had 

designed an axial impeller in 1754 and Bienvenue Launoy created a counter model 

propeller in 1783. In 1840, Horatio Philips has designed a machine capable to fly in 

vertically routes, in 1849 the first use of unmanned combat air vehicle was designed by 

Baloane Austriece. Pontond Amecourt had built and flown smaller helicopters models, 

which powered from steam in 1860.  In 1900, Nikola Tesla has presented the idea to 

control ballon wireless. During World War I, in 1916 aerial target was controlled from 

the ground flying with bomb has designed by Archibald Montgomery. In 1917 the aerial 

torpedo flew in automatic mode for US military representation designed by Kettering 

Bug. In 1924 was the first successful flight of RAE in 1921 designed by De Havilland. 

Reginald Denny led a project to develop a series of RPV in 1935 and later introduced 

a low-cost RC aircraft for training AA gunners in 1939. In 1944 Germans used a Fi-

103 V1 known as cruise missiles during World War II. In 1941 the first aircraft flying 

unmanned from the scientific research Northrop and the first Jet engines were used. It 

was designed by Teledyne Ryan Firebee. In 1955, the first unmanned aircraft in 

reconnaissance had used by the US military and British company Beechcraft.  In 1960 

the first flight of an unmanned helicopter Gyrodine QH-50A was used in Maryland. In 

1964, in the Gulf of Tonkin the U.S. has used a UAV in the conflict between the U.S. 

Navy and the North Vietnamese Navy.  In 1966, D-21 was designed for use in 

reconnaissance missions over China and the recognition aircraft utility was 

demonstrated in Vietnam (Prisacariu, 2017).   Singhal et al. (2018) has been 

documented of evolution UAV that in 1916, the Royal Navy used drones for gunnery 

practice, perhaps the first semiautomatic aero plane ever produced (aerial torpedo). 
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After that, with the introduction and incorporation of advanced navigation sensors, 

unmanned aerial vehicles (UAVs) became an essential part of the armed forces in 1933. 

The emergence of technology has not only eliminated the limitations of UAV exercises 

in the military, but it has also enabled them to extend their capacity in commercial 

applications such as agriculture, research activities, recreation, servile, transporting 

products, photogrammetry, and other purposes. 

2.1.7 Classification of UAV 

 There are two types of UAV, which have been classified such as based on 

aerodynamics and landing, and weight and range (Singhal et al., 2018): 

2.1.7.1 Based on Aerodynamics 

 Fixed-wing aircraft, chopper, multi-copter, motor parachute and glider, UAV 

with vertical takeoff and landing, congregating ready-made components, and 

commercialized UAV are some of the different types of UAV systems that have been 

built and are in the advancement process. Each one is assigned to a particular task and 

has its own set of zeros and ones.   

 Fixed-wing drones: are the most common one. They are saturated in design 

and production, which has led to the successful generalization of larger fixed-wing 

planes with minor modifications and improvements. Fixed wings are appropriate in 

response to higher air velocity and a steeper angle of air. When comparing fixed-wing 

and multirotor drones for the same payload, fixed-wing drones are more convenient, 

requiring less power, and having a thrust loading of less than 1. To control the 

orientation of an aircraft, rudders, ailerons, and elevators are used to control yaw, roll, 

and pitch angles. Fixed-wing drones are not possible to fly at a place and it is not 

possible to maintain their low speed. With a larger L/D ratio and a higher Reynolds 

number, fixed-wing drones are more efficient. On the other hand, they are less visible 

for L/D 10 because the Reynolds number and performance of smaller drones decreases.  

 Flapping wing drones: was inspired by insects such as small hummingbirds to 

large dragonflies. The lightweight and versatility of the wings were influenced by insect 

and bird feathers, which demonstrate the usefulness of weight and flexibility in 

aerodynamics. On the other hand, flapping wings are complicated due to their 

complicated aerodynamics. In a windy environment, flapping drones can support stable 
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flights in contrast to fixed-wing drones. The flapper motion is provided by light, 

flexible, and flapper wings with an actuation mechanism.  

 Fixed/flapping-wing: the result of combining the fixed and flapping 

mechanisms is used in situations where fixed wings are used to generate lift while 

flapping wings are used to generate propulsion. These types of drones are inspired by 

dragonfly which uses two pairs of wings for increasing the lift and also thrust forces. 

The main rotor blade of a multirotor produces a powerful thrust that is used for both 

lifting and propelling. Vertical takeoff and landing (VTOL) are possible with multirotor 

unmanned aerial vehicles, and they can fly anywhere. The number and placement of 

motors and propellers on the frame determine the multirotor configuration. Its moving 

ability to maintain a constant speed makes it suitable for surveillance purposes and 

monitoring. Multirotors require more energy, which limits their endurance.  

 Multicopter: has been divided into different categories based on the number 

and placement of motors. Each category belongs to a specific mission class, and the 

mission requirements. Monocopter, Tricopter, Quadcopter, Hexacopter (X, + 

configuration) Mode, Octacopter (X, + configuration) Mode, Octacopter (X, + 

configuration) Mode, Octacopter (X, + configuration) Mode, Octacopter (X, + 

configuration) Mode, Octacopter (X, + configuration) Mode, Octacopter (X, + 

configuration) Mode, Octacopter. 

2.1.7.2 Based on Landing  

 Horizontal takeoff and landing (HTOL) and vertical takeoff and landing 

(VTOL): HTOL is a fixed-wing aircraft extension with a high maximum speed and a 

smooth landing. VTOL drones are experts at flying, landing, and hovering vertically. 

However, their maximum speed is reduced due to the slowing of retreating propellers.  

2.1.7.3 Based on Weight and Range  

 Some researcher and organization have classified the drone based on their 

weight and range such as Nano (fixed wing and multirotor, 200g, 5km), Micro (fixed-

wing and multirotor, 2kg, 25km), Mini (fixed-wing and multirotor, 20kg, 40km), Light 

(fixed-wing and multirotor, 50kg, 70km), Small (fixed wing, 150kg, 150km), Tactical 

(fixed wing, 600kg, 150km), MALE (fixed-wing, 100kg, 200km), HALE (fixed-wing, 

1000kg, 250km), Heavy (fixed-wing, 200kg, 1000km), and Super Heavy (fixed-wing, 

2500kg, 1500km). Commercial drones are now in global market such as Autel Premium 
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(1.6kg), Blade BLH7480A (95gm), Dji Product (1.2kg to 3.80kg), KAIDENG K70C 

(0.57g), Parrot ANAFI (0.32kg), PARROT BEBOP 2 POWER (0.525kg), JXD 

509G(10kg), Quanum Nova (15kg), SYMA X8HG (~1.5 kg), Yuneec Tornado H920 

(4.9kg), TYPHOON K (1.7kg), TYPHOON H+ (1.645), WALKERA SCOUT X4 

(2.27kg), VOYAGER 3 (3.650kg), and KAIDENG K70C (0.579kg).   

2.1.7.4 Designing Hardware of Unmanned Aerial System  

 The design of an unmanned aerial system includes the unmanned aerial 

vehicle and other subsystems a communication connection between the UAV and the 

operator, a ground control station, and accessories like a gimbal and a payload. The 

selection of components like the airframe, controller, engine, propellers, and power 

supply is critical and necessarily requires strong capabilities and full-fledged 

mathematical calculations to design a UAV for a particular task.  

 Aircraft design: the type of application determines the aircraft's design 

challenges, which include coverage area, maximum altitude, speed, climb rate, flight 

time or endurance, and stability. Even though maximum altitude is restricted by 

aviation regulations, higher altitude allows for a larger coverage area and increases 

survivability. Inertial measurement units, engines, propellers, and receivers, processors, 

and airframes are the main components of aircraft subsystems. Alloys, aluminum, and 

titanium are the most popular metallic materials used in aircraft construction, while 

non-metallic materials include transparent and reinforced plastic.   

 Ground Control System:  made up of a wireless router and a computer that is 

used to collect, process, and data. Open system architecture, compatibility with various 

platforms such as airborne, ship, and land, real-time data execution, ability to monitor 

multiple UAVs, payload control, and contact with other ground control stations are all 

criteria for a ground control station. Other safety and security functions that can be 

anticipated from the ground control station include alerts and emergency response plans 

in the event of a malfunction, as well as power outage restoration.  

 Data Link: is the setup of a communication channel between the Aircraft 

sensors and ground control station (GCS). A wireless link IEEE 802.11 was used to 

connect between the aircraft's central data unit and the ground control station. 

Currently, antennas operate at 2.4GHz with a minimum gain of 12dBi. For online video 
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and picture transmission to a ground station, an additional wireless connection based 

on orthogonal frequency division multiplexing (OFDM) is used(Singhal et al., 2018).  

2.1.7.5 UAV Data Collection and Analysis  

 Data collection, pre-processing of images, classification of images for feature 

extraction, measurement of mathematical equations based on the reflectance of images 

driven from drones such as Indices, and then the development of a suitable model for 

results visualization and analysis are all parts of the UAV data collection and processing 

process.   

 Data collection: flight planning, marking Ground control points (GCPs) for 

samples collected, and UAV flight are all automated. Correct pre-processing, which is 

required for the accuracy of UAV data, is a critical step in the creation of models. Image 

collection, accurate georeferencing, ortho-rectification, and mosaicking are all parts of 

the pre-processing of UAV data (aligning images using Image control points, point 

cloud, and GCPs). The supervised and unsupervised methods for planimetric feature 

extraction such as road, railway track, agriculture ground, forest, land cover, and water 

bodies are used in the classification of georeferenced UAV photos. The methods of 

maximum likelihood classification (MLC), random forest, and support vector machine 

(SVM) have been used. In the case of unsatisfactory results, manual classification can 

be tried. The results of the UAV have been implemented based on the case study; in 

general, this method of processing has been used for land use land cover classification, 

agriculture biophysical parameter determination, and soil study. The Normalized 

Difference Vegetation Index (NDVI), Green-Red Vegetation Index (GRVI), Soil 

Adjusted Vegetation Index (SAVI), and Modified Chlorophyll Index are some of the 

most widely used indices (MCI). Finally, users could generate models for a particular 

use in the case study(Singhal et al., 2018). 

2.1.7.6 UAV Software for Images Processing  

 UAV software can be used to design flight plans, image processing, and data 

analysis for service providers and farmers to provide essential inputs for optimization 

and better decisions at a low cost. UAV software can be used for a variety of purposes, 

including mining, building, surveillance, rescue operations, and recreation. At the very 

least, good UAV software should include automation of UAV flight plans, augmented 
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view, geo-rectification of images, and the generation of 2D/3D models (Singhal et al., 

2018).  

 A comparison of common UAV software on the global market are:  

 Aero Points: provides proper ground control points (GCP) for UAV surveys. 

It supports automated data upload, which is quick and simple to set up. However, it has 

some limitations in terms of features such as NDVI maps and the design of 3D models.  

 Agisoft Metashape: allows for the creation of 3D models and also 

photogrammetric processing. NIR, RGB, thermal, and multi-spectral image sensors are 

all supported by this cost-effective all-in-one software suite. In comparison to Pix4d, it 

is slow and limited in features. There is only one license for one computer.  

 Drone Deploy: can produce high-resolution charts, studies, and 3D models, 

and also real-time 2D Live Maps for fast analysis. It is better for agricultural 

applications and works with third-party UAV hardware and accessories. The surface 

detail for buildings limitation of this product is somewhat disappointing as compared 

to the more specialized solutions from Agisoft and Pix4D.  

 Drone Logbook: It can import flight logs and automatically fill in the 

information, and display GPS trace and replay it in 3D. Compliance and custom 

reporting, task preparation, and an operations schedule are all advantages of this 

program. This program, however, is unable to create digital elevation and terrain 

models.  

 Drone Mapper Rapid: Orthomosaicking, DEM, and a robust processing 

algorithm are all possible with free to download and test on a limited data set, but only 

capable of processing 150 images per scene.  

 Drone Mapper Rapid Expert: Up to 1000 geo-tagged JPEG images of 12 

Mpixel format or greater can be input, with maximum photogrammetric functionality. 

It can generate X8, X4, or X2 DEMs and can use up to 1000 georectified images. The 

product's drawback is that it lacks self-calibration capabilities.  

 Field Agent: Sentera's AgVault is being replaced by an IOS Mobile device-

powered automated flight with unlimited NDVI images, which enables users to scout 

crops in near real-time, capturing health and vegetation index data. The trial version of 

the mobile app is free. The complete version costs $29 a month.  



 15 

 Live NDVI: capable to use video technology for livestream NDVI video at 

the field’s edge with real-time during flying drone. The limitation is compatible only 

with sentera double 4K sensor.   

 Pospac UAV: able for georeferencing directly and the post-processing 

software limited with maximum accuracy and efficiency. It is compatible with APX-15 

L-UAV.  

 Pix4D: users can generate orthomosaics, point clouds, and professional 3D 

models with photo camera self-calibration and automatic DTM generation.  

Topographic maps can be done manually.  

 Photo Mod: provides all photogrammetric products like DEM, dDSM, 2D and 

3D-vectors, and orthomosaics. This product is high performance with a simplified user-

friendly interface and possible to automation of photogrammetric operations. Its 

limitation does not have the camera self- calibration facility, unlike pix4D.  

 Sensefly eMotion: designing flight planning and data processing is feasible. 

It can also connect wirelessly to drones, perform finger swipe flight planning in a 

complete 3D environment, and support multi-flight missions. While this product has 

advanced features, it does not have real-time NDVI processing.  

 Sense fly Survey360: the product is a complete aerial mapping system with 

accurate geo data that generates accurate point cloud and surface model outputs in a 

shorter amount of time. However, it does not provide a full three-dimensional model.  

 Ugcs: It can be used to create three-dimensional mission planning 

environments, prepare and fly projects without an internet connection, and it can 

support the majority of drones. It can also create routes from KML files and create in 

no-fly zones for major airports. However, it lacks real-time NDVI video, requiring the 

use of a graphics card with DirectX 9 support.  

 Virtual Surveyor: 3D visualization photogrammetry, virtual surveying, flight 

planning, and civil architecture are some of the services provided by the software. This 

product could be used for flood simulation, quick simulation, and interoperability with 

computer aided design environments. It can also handle large amounts of data files. Its 

drawback is that the virtual surveyor is not responsible for the information's reliability, 

precision, or suitability.  
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2.2 Basic of Height Measurement  

 Tree height is one of most important parameters used to estimate individual 

tree biomass and for forest monitoring and management purposes. To derive tree height 

there are two main techniques measuring tree height from field based or using remote 

sensing technology. The length of tree stem is an important part of any calculation of 

the total amount of wood contained within it. Furthermore, the height of the tallest trees 

is another essential factor in forestry. The vertical distance from ground level to the 

highest green point on a tree is described as its height. It may be difficult to define tree 

height in terms of stem length or to identify the height to the increasing point at the top 

of the stern. In addition, near the top of the crown of many tree species that it is hard to 

identify exactly what constitutes the stem, because of the dense growth of small 

branches near the tip. It's also difficult to determine where the top of the tree is. So, 

from the ground, while looking at a tall tree with a thick canopy. Although a tree's 

highest green point (tip) is much easier to recognize than its stem reach. In some cases, 

standing far away allows one to see the top clearly(West, 2009).  

2.3 Tree Height Estimation 

2.3.1 Field-Based Tree Height Measurement  

 There are three methods used to measure tree height such as direct, 

trigonometric, and geometric methods (West, 2009): The first method is direct height 

measurement: a pole and a telescope is used. The pole is direct1y positioned alongside 

the tree stem. The telescope is built in to record the height to which the pole has been 

raised. These are able to measure tree heights to about 8 m. The second method is height 

estimation by trigonometric method. The calculation is based on trigonometric 

methods. Certain variables need to be known before the vertical height of a tree standing 

on flat ground, the distance of an observer to a tree and the angel of the observer to the 

tree based height from eyes of observer to the tree. The third method is tree height 

estimation by geometric method. This method is similar to the trigonometric one. In 

contrast of using a telescope and poles, the observer needs a straight stick to know the 

length max. 3 m - 5 m. The observer uses a rule with standing convince far from the 

tree and not closing his eyes during using the ruler base on the stick to see the top of 

the tree.   
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 Direct measurement of tree heights or field-based height measurements are 

possible with telescopic poles, tape, hypsometer, laser device, or total station. The 

accuracy and precision are limited to a tree height of 23 m. Moreover, this method is 

time consuming and uncomfortable. In addition, direct measurements are done by using 

destructive methods, which require harvested trees and are limited to the length of the 

measuring tape. 

 Non-destructive geometric or trigonometric methods have also been used 

which result possible to retrieve from measure tools such as hypsometer, laser device, 

or total station (Krause et al., 2019b). In the classical, individual tree height 

measurement method can be measured by climbing trees (Jurjević et al., 2020) or using 

telescopic poles(Van Laar & Akça, 2007). The telescopic poles are consisting of 

aluminum or fiberglass. They are used to measure the tree height up to 15 m. 

Hypsometers is a standard practice of tree height measurement. Their design is based 

on their construction theory. Blume–Leiss, Suunto, and Haga, and the Abney level 

hypsometers are trigonometrically related. Christen, Merritt, Chapman, and 

Vorkampff–Laue hypsometer have a geometric basis (Van Laar & Akça, 2007). 

Clinometers, hypsometers, orange finders have been documented as an indirect field 

measurement. Hypsometer or range finders are commonly applied in forest inventory 

(Bragg, 2014; Dobbertin, Neumann, & Schroeck, 2013; Skovsgaard, 2004; Van Laar 

& Akça, 2007; Wong & Tsuyuki, 2017). Classical direct methods have limitations in 

terms of high trees and scale accessibility. Indirect methods are more efficient for big 

areas and quantification of tree. Moreover, the enable the measurement of high trees. 

In order to obtain accurate tree height estimates with small errors, only qualified 

collectors should perform the work. They need good knowledge about the forest 

structure, tree species and height, surrounding topography, measuring distance and 

applied instrument. Experiences from the field showed still a high amount of random 

errors, hence, common instruments are based on the tangent method to reduce 

systematic error (Larjavaara & Muller‐Landau, 2013).   

2.3.2 Remote Sensing Tree Height Measurement  

 Remote Sensing (RS) are advance tools to use in order to seek for issue, 

producing information location, and analysis. Remote Sensing sensor collect data from 

the various location as capturing images using electromagnetic spectrum. It’s also used 
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to investigate natural resource information which possible to see in visible or near-

infrared (Andreo, 2013). 

 The development of Remote Sensing technology has also played important 

role in tree height measurement. Measuring tree height using indirect tree measurement 

or Remote Sensing is able to retrieve tree height. Traditionally, remote sensing 

technique uses photogrammetric measurements which we are possible to generate tree 

height from analog aerial imagery, digital aerial photogrammetry (DAP), active sensor 

remote sensing techniques such as Light Detection and Ranging (LiDAR), or 

Interferometric Synthetic Aperture Radar (InSAR) (Krause et al., 2019b). LiDAR 

technology was the principal experiment as remote sensing tools for topography and 

bathymetry in the 1960s. In 1970s, LiDAR was applied for forest applications and it is 

also the first investigated in the 1970s. In early 1980s, the interest in the accurate 

estimation of height forest stand, volume, and biomass have been developed, it was 

shown that the stand height estimates produced by LiDAR technology achieved 

accurately comparable with field observation, or the standard of photogrammetric 

measurements. LiDAR has been successfully used in estimating timber volume and 

biomass. In 1993, most of forest studies using LiDAR were successful with profiling 

systems. LiDAR applied either full-waveform or discrete return approaches. Since the 

Global Positioning System (GPS) had not yet completely established at the time, it was 

difficult to locate the LiDAR mark on the ground. Some researchers have been 

exploring LiDAR scanners with precision GPS and Inertial Navigation Systems (INS), 

also known as internal measurement units since the mid-1990s (IMUs). The stand 

height and volume measurements were comparable to those obtained with profilers. 

The new scanning LiDAR systems' return density allows for the resolution of individual 

tree crowns, enabling for the measurement of individual tree heights. The stand height 

and volume which other forest height includes forest parameters such as biomass and 

vertical foliage distribution begin to study(St-Onge, Treitz, & Wulder, 2003). 

Currently, LiDAR data has been used as tree parameters for extraction from LiDAR, 

which has applied field measurement to validate results (Ganz et al., 2019; SILVA et 

al., 2018; Su et al., 2012). Even though there are many studies applied LiDAR 

technology for estimation tree height, LiDAR data required high budgets which it may 

provide limitation to forest management(Moe et al., 2020) and another remote sensing 
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technology, satellite images are suitable to use for large scale only due to spatial 

resolution, weather condition and times (He et al., 2019). Unlike Lidar, new 

development of low-cost UAV produce high precise for retrieving canopy height and 

its crown coverage has been applied to obtain tree height from different types such as 

Pinus Pinea plantation (Guerra et al., 2016), Pine tree (A. C. Birdal et al., 2017), 

Pinaceae and Taxodiaceae (Lim Ye et al., 2015) , and Olive tree (Díaz-Varela et al., 

2015). 

2.3.2.1 The Use of UAV to Estimate Tree Height 

 UAV product has been successfully applied in different purposes for urban 

forestry (A. Birdal, 2016) and forest monitoring(Berie & Burud, 2018; Paneque-

Gálvez, McCall, Napoletano, Wich, & Koh, 2014). Urban forest inventories are 

including information of species, diameter, condition, maintenance needs, location, 

height, growing class, etc. This information requires an update in specified time 

intervals in order to bring to decision making. The Indirect measurement is useful for 

inventory analysis with the UAV platform. It is the measurement and archiving of aerial 

imagery for future temporal comparison. UAV products (true color aerial photography, 

Near-Infrared photography and included LiDAR data, DEM, and thematic imaging) 

complete spatiotemporal analysis. They allow to detect changes over time with small 

UAV which are affordable and provide aerial imageries. Multi-temporal data collected 

from UAV will provide effective comparisons to clearly identify the change of 

landscape and enables monitoring of certain areas. Inventory and spatial comparisons 

will provide useful information about urban forest structures that will lead to more 

effective management decisions (A. Birdal, 2016).  Pix4D software was used to create 

a high-resolution DSM. Using a orthomosaic and a 2 m wingspan fixed-wing UAV 

capture photographs covering 158 ha in a single flight. In this study, a consumer-grade 

RGB camera was installed to measure tree height. Other researchers used a low-cost 

2D laser scanner carried by a hexacopter to estimate corn plant height. It is a low-cost 

scanner to derive height of plant as well as generation of canopy height model (CHM) 

from Dji Phantom 2 vision. The UAV flew 50 m above ground level, feasible to derive 

the tree height (Zainuddin et al., 2016).  The estimation of tree height (2015) using a 

low-cost camera mounted on DJi Phantom 3 professional generated tree heights from 

two types of trees Picea abies of Pinaceae and Metasequoia glyptostroboides (M. 



 20 

glyptostroboides) of Taxodiaceae. DSM was generated from Pix4D software to extract 

tree structure for tree height estimation. They successfully derived heights from both. 

It shows significant differences upon the fallen tree leaves. A study of mango and 

avocado tree heights was performed with a Dji Phantom 4. It derived tree height (CHM) 

from the DSM and DTM which are comparable to terrestrial laser scanner and airborne 

laser (Wu et al., 2020). The recent use of Dji Phantom 4 Pro for 24 hectares of mixed 

forest stand on a mountain area was successfully done. The altitude of the UAV was 

120 m above ground level. It generated DTM and CHM for tree height estimations and 

were comparable to field observations (He et al., 2019). 

2.3.3 Methodology for Tree Heights Estimation  

 Previous studies showed the successful application of different UAVs to 

obtain tree height from the Dji Phantom series such as Phantom 2 vision+ (Zainuddin 

et al., 2016), Dji Phantom 3 Professional(Lim Ye et al., 2015), Dji Phantom 4 (Wu et 

al., 2020), and  Dji Phantom 4 Pro (He et al., 2019). The tree height was generated from 

the CHM which were derived from DSM and DTM. Pix4D has been used to identify 

individual trees using different methods. The super wide camera lens of Dji S800 which 

known as profession flying platform has been applied to derive CHM (Panagiotidis et 

al., 2017).   

 Zainuddin et al. (2016) has used Pix4D to process UAV images and generated 

CHM applied structure from motion SfM algorithm, and compared CHM with ground 

data. After the image processing, SfM has been used to export 3D point clouds to 

generate a Digital Elevation Model (DEM). Terrascan was applied to filter and remove 

noise from data points. Filtering and classification processes have been applied to create 

five categories ground, low vegetation, medium vegetation, high vegetation, and noise. 

Classified point clouds are capable to generate DEM from the noise class by removal 

unwanted data of ground. Fast binning approach use to create raster from las point 

clouds in order to create the DEM and CHM. The Minus geo-processing tool was used 

to generate tree height from the difference between DSM and DTM dataset. The result 

verification was applied the tangent method (𝑡𝑟𝑒𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑑ℎ𝑧 ((𝑡𝑎𝑛𝜃𝑎 + (𝑡𝑎𝑛𝜃𝑏))), 

where dhz is horizontal distance, and a = depression angle and b = elevation angle. The 

method assumed the tree base is directly above the treetop. 
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 Lim Ye et al. (2015) used automatic generation ortho-mosaic images and 

DSM from Pix4D. In order to retrieved tree attribute estimation, the research goes 

through seven steps derivation of images and DSM from analyzing of stereo images in 

Pix4D software, extraction of tree area from otho-mosaic, subtraction of DTM and 

DSM to nDSM, combination of nDSM and otho-mosaic through layer stacking, 

segmentation of the stacked images, identification of the tree position and height, and 

comparison of results with field data. 

 Wu et al. (2020) used Pix4D mapper to process UAV images. Point cloud was 

densified before the classification. They also use Pix4D to classify the ground points 

using a machine learning algorithm. The applied triangulation method was the 

Delaunay triangulation algorithm. The algorithm performs two steps removal of outlier 

and matches refinement. It can be used to generate DSM and DTM. The DTM and 

DSM is created by interpolation of classified ground points. In order to produce CHM, 

they differentiate the distance between ground and tree top by subtraction of DTM from 

DSM. The 3D point cloud was automatically georeferenced through geotags embedded 

in the photos, however, to improve the horizontal georeferencing accuracy which the 

CHM was then georeferenced based on the CHM from the Terrestrial Laser Scanning 

(TLS) data. Finally, a maximum CHM value for each tree crown was computed for 

comparison with the canopy height estimates from the TLS data. 

 He et al. (2019) conducted an observation in a complex terrain to extract forest 

structures in a  mountainous area as well as tree height estimation. The study contained 

several steps. Firstly, the reconstruction of 3D point clouds and creation of a high-

resolution DSM using photogrammetric technologies. Secondly, they used automatic 

classification of point clouds to generate DTM. BEP extraction and RBF neural 

network-based interpolations were used to produce high value pixel to represent DSM 

and by subtracted from DTM. Third, the individual tree height estimated from the CHM 

applied moving smooth window filter method-local maxima under a contour-surround 

constraint. Last, evaluation of the accuracy from the estimated and measured variables.  

 Panagiotidis et al. (2017) proposed tree height estimation by extracting DSM 

and DTM. DTM were derived by auto-classification from sparse point clouds. DSM 

were obtained by reconstruction of complete dense in Agisoft PhotoScan 

photogrammetry software. They applied the morphological filter-focal statistics tool in 
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ArcGIS to identify local maxima. The morphological filtering is required to identify the 

highest pixel value from the treetop of the CHM.  Some pixels indicated multiple local 

maxima in a single crown area. The researcher applied adaptive filtering method based 

on CHM height values to identify individual tree positions.      

 A. Birdal (2016) has shown various methodologies for single-tree detections 

which test comparatively LiDAR data-based methods. They show the results of forest 

structure deeply affect the performance of all algorithms. Density and clustering were 

successfully applied in tree detection. The algorithms are differing which is mostly 

found in tree detection rather than height estimation. In the study, point clouds were 

retrieved from UAV aerial imagery and processed using LiDAR methods to obtain 

individual tree heights in a forest. Cluster formation using modified k-means approach 

which using ground-based training data. A Euclidian distance criterion was used to 

remove the unwanted local maximums. Local maximums were pretended as seed 

points. Based on these points, a k-means vector quantization algorithm is used to cluster 

the point data. Training data-based height reduction factor is used to lower the bias to 

improve the clustering of similar objects. A voxel layer single tree modeling algorithm: 

the algorithm works base on density images which are calculated from consecutive 

height layers that are extracted from point data projected into a voxel space. Images 

were traced with a hierarchical morphological algorithm from top to down assuming 

there occurs a tree crown when higher amounts of points are traced. Adaptive 

segmentation based on Poisson Forest stand model: this method is a pit-filling 

algorithm for Canopy Height Model (CHM) which applies a low-pass filter with a 

binominal kernel. It depends on the distance between the nearest neighbors. The 

distance needs to be estimated. Each ground training data CHMs, enables to interpolate 

various resolution to seek smallest tree crowns. Local maxima detection with residual 

height adjustment: the method uses the first return of point cloud data to interpolate and 

generate a DSM with different resolutions that are based on the training data. The DSM 

is smoothed from applying a 3x3 Gaussian filter by a number of times which assumes 

the DSM is pit-free. The first returned heights of the DSM are calculated using a 

percentile residual height distribution. The window size, the number of Gaussian runs, 

and the residual height percentile adjustment are set specifically for each study area 

which is based on the ground measured tree height and position. Segmentation based 
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on geometric tree crown models: computing the correlation between point cloud data 

and a geometric tree crown model which is placed at the center of a pixel known as the 

basis of this algorithm. A result of the images created with this correlation is possible 

to use in tree detection by marking each raster cell with a non-zero CHM value and a 

positive correlation value as seed points. Until a local maximum is found where a seed 

doesn’t have a high correlation with neighbor seeds, these seed points are updated to 

the neighbor cell that has the highest correlation. The final seed is characterized as the 

tree crown segment. Adaptive filtering based on CHM height values: CHMs apply low-

pass filtered using Gaussian kernels. CHMs are required to interpolate into a grid of 

desired values i.e., 0.5 m by using the maximum of the first return in the related grid. 

The empty cells in the CHM are filled by filtering the CHM with a defined window size 

by taking the average of pixels within the window. The algorithm has a pre-requirement 

of defining window sizes and height classes to produce results. 

2.3.4 Method Comparison of CHM Retrieved from LiDAR and UAV 

 LiDAR (Light Detection and Ranging) is a remote sensing technology to 

generate detailed 3D structure information. The results from a 3D structure can be used 

for tree height estimation. Su et al. (2012) showed different methods of various 

researchers to estimate tree height using LiDAR data. CHM was used to estimate the 

height. CHM can be used to find differences between DSM and DTM. LiDAR provides 

good information about the height of non-ground objects like trees, road buildings, 

vehicles, etc. Various methods were used to smooth CHM in order to generate tree 

height estimation e.g., the Gaussian smoothing method. They used a recognition 

algorithm to detect the canopy cover, and a maximum search algorithm to recognize 

crown tops. Popescu, Wynne, and Nelson (2002) applied different moving windows of 

local maximum filtering to find the highest values which represent single trees estimate. 

The moving window commonly uses 3x3, 5x5, and 7x7 pixels. They suggested that 

choosing the correct filter window size is related to tree location estimation. If the filter 

size is too small or too large, it will affect the prediction. Most commonly used sizes 

are 3x3 and 5x5 (Daley, Burnett, Wulder, Niemann, & Goodenough, 1999; Wulder, 

Niemann, & Goodenough, 2000).   

 Unmanned Aerial Vehicle (UAV) is a passive remote sensing technology to 

derive tree height accurately. Obtained data can be compared to Airborne Laser 
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Scanning (ALS)  (Krause et al., 2019b). CHM was applied to estimates tree height. It 

was retrieved from different photogrammetric software to generate ortho-mosaic, point 

cloud, DTM and DSM. S. Krause, T. Sanders, J.-P. Mund, and K. Greve (2019a) 

created CHM by interpolating the nearest neighbor of point cloud (DTM) merged with 

ground data. In this study, photogrammetric software was used which is based on DTM 

and DSM like Pix4d software (Hartley et al., 2020; Zainuddin et al., 2016). CHM 

identifies tree tops by calculating the difference between DSM and DTM. Local 

maximum was applied in various studies as well (He et al., 2019; Lim Ye et al., 2015; 

Wu et al., 2020; Zainuddin et al., 2016).  
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CHAPTER 3  

RESEARCH METHODOLOGY 

  

 In this chapter, we are going to present our data processing, our results and 

draw the conclusion respectively to the flow chart in figure 1. First, our UAV images 

were processed in PiX4D which automatically generated DTM and DSM based on an 

approach SfM and Multi-View stereo (SfM-MVS). CFS filter were applied to 

differentiate ground and vegetation point clouds. The classified point clouds ground 

and none ground were converted to DTM and DSM. Canopy Height Model (CHM) 

were calculated by subtraction of DTM from DSM. Tree locations contained a buffer 

from field data collections. They were used as input features to extract the tree height 

from CHM. Furthermore, an evaluation of tree height was performed by comparison to 

field measurements in statistical analysis. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 2  Workflow Diagram for Extracting Tree Height from UAV Data 
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3.1 UAV Platform 

 A DJI Phantom 4 Real-Time Kinematic (DJI P4 RTK) was used in this 

study. The UAV capture images of 20-megapixel RGB true color images through a 

1-inch Complementary Metal-Oxide-Semiconductor (CMOS) sensor consumer-

grade camera with a field of view (FOV) of 8.8° and a focal length of 8.8 mm (35 mm 

format equivalent). The maximum flight time is  30 minutes with a maximum flight 

range of 7 km (He et al., 2019). In addition, this DJI product includes RTK which 

provides positional accuracy of less than 2 cm. 

3.2 DGPs Platform 

 Two types of DGPs were used emlid reach and E91. Low-cost RTK global 

navigation satellite system emlid reach signal tracked (GPS/QZSS L1, GLONASS G1, 

BeiDou B1, Galileo E1, SBAS) and 72 channels with LoRa ration. It can work up to 8 

km from base station and up to 30 hours in standby (Emlid, 2019). In order to get precise 

data of ground positioning via reach view, 2 apps were connected emlid reach. This 

product has been used in earlier studies to assess the accuracy of Dji Phantom data 

(Meghani, Miller, & Holderman, 2017) and in the evaluation of low-cost GNSS 

Receivers (Jackson, Saborio, Ghazanfar, Gebre-Egziabher, & Davis, 2018). E91 GNSS 

receiver product has a dual frequency with 624 channels with strong signals (BeiDou 

B1, B2, B3;  GPS L1, L2, L2C, L5; GLONASS L1, L2; GALILEO E1, E5A, E5B; 

QZSS L1, L2, L5; SBAS  L1) and can be used in standby up to 16 hours which allowed 

to work with it using Landstar 7 apps (CHCNAV, 2018).    

3.3 Photogrammetry Software 

 In this research, Pix4D was used which was founded by a Swiss company in 

2011 (®Ecublens, Switzerland) It is widely known as an image photogrammetry 

software. This software has become the main provider and applied for industry 

standard. The application of Pix4D is automatically divided into three steps: initial 

processing, point cloud densification, and DSM and orthomosaic generation (Ivosevic, 

Han, & Kwon, 2017). It used structure from motion and multi-view (SfMMVS) to 

generate output data like 3D point cloud with average density larger than 4000 

points/m3, DSM, and othomosaic. First, the software recognized and tie key points 

automatically about median. Roughly, 70000 key points per image. Second, buddle 

adjustment applied to do the camera parameters which calibrates each image 
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automatically. Then, the software generates a spare set of 3D key points. Last, multi-

view approach used to create densified point cloud in high resolution and estimate point 

positions.  To improve accuracy, images were referenced with GCPs. Among others, 

the output were a DTM applied inverse distance weighting (Navarro et al., 2020).    

3.4 Study Area 

 Phnom Kulen National Park (PKNP) is located 48 km from Siem Reap 

Province and covers 37,380 ha. It is located in northwestern Cambodia. This location 

is a prominent archaeological observation site, a critical area for biodiversity, and a key 

component of the regional watershed (Singh et al., 2018). Land cover is primary 

regeneration and secondary forest. In the southern part, the cover mainly consists of 

cashew and cassava plantations (Singh et al., 2019). There are two main problems 

which have been documented related to forest management issues erosion linked to loss 

of forests and increase of agriculture. Hence. 8000 people have moved and lived on the 

mountain recently. Since 2005, farmland turns into crop land which are mostly cashew 

plantation (Cambodia, 2017).  

 

Figures 3 Study Area at Phnom Kulen National Park 
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3.5 Field Exploration  

 Google Earth Pro was used to identify the study area and to plan fieldwork. 

The selected area was an example area of the local region.  It was suitable for necessary 

experiments, GCPs placement, and tree height measurement. Before the first flight 

missions, it was noticed that our UAV has a very strong effect of the antenna near our 

sites (Figure 4), hence, the UAV could not cover the planned study area. The mission 

was relocated to the center of the plot.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 4 The Antenna That Block UAV in Flight Mission 
 

3.6 Flight Planning and Flight Session  

 The UAV required good weather conditions to fly. The flight altitude was 50 

m and 120 m above ground level (AGL) (He et al., 2019; Zainuddin et al., 2016) to 

compare estimated results of different flight attributes. It was proposed to fly at 50 m 

and 200 m AGL to cover approx. 1 ha. Planning of the Flight was first to create KML 

files based on google earth pro which were imported into the controller. Mission plans 

from KML in GS RTK could be used by the build-in app of the controller. The flight 

path automatically generates the start and end point in the study area. Flight attribute 

such as the altitude was typed in separately with a  flight speed of max  3.9 m/s. Side 

overlap rate was 70 % (Zainuddin et al., 2016). Forward overlap rate was 80 %. Camera 
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ratio was 3:2. White balance was set to sunny and the camera angle was -90. There are 

133 images and 39 images retrieved from the flights. The flight time was approx. 5min 

to 6 min (Figure 5).     

 

 

 

 

 

 

 

 

 

 

 

 

Figures 5 UAV Settings in GS RTK Application Applied in Research 
 

3.7 Field Measurement   

 Ground truth data were collected at the same time with UAV images during 

28 of March 2021. Two ground truth data sets were collected Real-Time Kinematic 

Global Positioning System (RTK GPS) receiver as reference data for selected 5 GCPs 

(4 at the corner and one in the middle) and 4 checked points respectively to Pix4D 

recommendation which more GCPs not mean more accuracy based on accuracy 

analysis (Pix4D). GCPs and check points were 150 cm x 150 cm. They were sprayed 

on the ground with red color. Tree heights were measured with 30 mm PVC pipes 

(Figure 6) which were removable. Tree height measurement by following the far angle 

to see the top of the tree respectively to trigonometric methods (M. Ramli & K. N. 

Tahar, 2020) with tree position also used RTK GPS (Emlid Reach and E91 product) to 

determine in 50 tree random points in ArcGIS software.  
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a) 50 tree locations selected                         b) GCPs designed 

 

 

 

 

 

 

 

 

 

 

c) Tree height measurement                          d) Measuring top of tree  

Figures 6 GCPs and Tree Locations from Field Measurement 
 

3.8 Image Processing 

 The images from the 50 m flights above ground level and 200 m flights above 

ground level were processed differently. The UAV data were processed in three steps 

in Pix4D initial processing, point cloud densification, and DSM (Ivosevic et al., 2017). 

First, data input to Pix4D while the input was defined to WGS 84 and the output was 

defined to WGS 84 UTM Zone 48N, EMG 2008 geoid. Those were processed as 3D 

maps. After initial processing, GCPs were marked to georeferenced images. In the 

second step, a half image was applied to set the image scale to default. The optimum 

was set in point density with at least 3 matches. Point clouds were classified 

simultaneously. The processing was continued by two different methods (Figour 7). 

Key point extraction and camera calibration were done automatically using advanced 
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automatic aerial triangulation (ATT), Budle block adjustment (BBA), and a spare 3D 

point cloud which was computed. After 3D point cloud and textured mesh generation, 

an output-orthomosaic and DSM and DTM from point cloud classification were 

obtained.  

Tables  1 Pix4D Functions Used in Each Processing Steps 
 

Processing Functions   System Processing 

Initial processing 

Advanced automatic aerial triangulation (ATT), 

Bundle Block Adjustment (BBA), and spare 3D 

point cloud  

Point cloud mesh Dense 3D point cloud and a 3D textured mesh. 

DSM, Orthomosaic  Generation the DSM, DTM, orthomosaic,  

 

 

 

 

 

 

 

 

 

 

 

a) Default settings DSM generation       b) Default settings DTM generation 

 

     

 

 

 

 

     c) Default settings DSM generation       d) Default settings DTM generation 

 

Figures 7 DTM and DSM Generation Settings Used in This Study 
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The used methods were:   

• Processing was done with default settings method DSM generation using 

resolution 1 xGSD, Inverse distance weighting (IDW), applied noise 

filtering and sharp for surface smoothing, and DTM generation at default 

resolution 5 xGSD.   

• Additional processing was performed with customized settings. DSM 

generation was changed to a resolution of 5.48 xGSD for both flights due 

to software limitations of GSD. While the original flight from 50 m had 

a resolution of 1.37 cm/pix, triangulation, applied noise filtering and 

sharp for surface smoothing and DTM generation at resolution 5.48 

xGSD the same as DSM.   

 Each processing step was quite long consuming. The 50 m flights were 

processed with two methods as mentioned above which were the same as for the 200 m 

flights. 

3.9 Point Cloud Classification  

 Extraction of semantic information can be done by two methods. The first 

method consisted of a segmentation of coherent objects from a scene. The Second 

method was assigned to class based on our images to each point (Becker, Rosinskaya, 

Häni, d'Angelo, & Strecha, 2018). Point cloud classification is mostly used with LIDAR 

data to generate 3D city models, 3D building models, building extractions, DTMs, and 

change detections (Yastikli & Cetin, 2016). The LIDAR point cloud standard 

classification was introduced by the American Society for photogrammetry and remote 

sensing (ASPRS) (Table 2) (Graham, 2012).  There are many software’s used to process 

LiDAR data for visualizing and analyzing, but the accuracy differs and depends 

requirements (Fernandez-Diaz et al., 2008). One common software for tree height 

estimation by point cloud classification is lastools. It is available in 

https://rapidlasso.com/lastools/ (A. C. Birdal et al., 2017; Chan, Fung, & Wong, 2021; 

Jin, Oh, Shin, Njungwi, & Choi, 2020; Marcu, 2018; MILLIKAN et al., 2019; Ojoatre, 

2016). Even though this software was successfully applied for point cloud classification 

and tree height estimation, there are limited functions for users. Free functions are 

laszip, lasindex, lasvalidate , lasinfo, las2las, lasview, lasdiff, lasmerge, las2txt & 

txt2las, and lasprecision while there are many more function with a license blast2dem,  
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blast2iso, lasground, lasheight, lasclassify, lasgrid & lascanopy, lasboundary, 

lascontrol, lasclip, lascolor, las2shp & shp2las, lasoverlap, lasoverage, lasduplicate, 

lassplit, las2tin, las2iso, las2dem, lasthin & lasnoise, lassort, and lastile(Engineering, 

2015). Lastools functions for tree height estimation and point cloud classification 

requires to purchase it to differentiate between ground and none-ground (Tong et al., 

2020). It was proposed to apply cloth simulation filtering (CFS), cloudcompare v2.12 

alpha 64 bit which is open source software. Cloth simulation was introduced by Zhang 

et al. (2016). The algorithm is able to define ground points from LiDAR points clouds, 

while the input point cloud goes up and down, a cloth drop arranges low values points 

from high values points. Then it evaluates the arranged points based input data. The 

finalized results are ground and none-ground (Girardeau-Montaut, 2016). In addition, 

cloudcompare  compares two points ground and none ground by using cloud to cloud 

or C2C (compare the nearest neighbor cloud to cloud), C2C_HF (nearest neighbor 

distance with height function model), and C2M (compare cloud to mesh) (Lague, 

Brodu, & Leroux, 2013).   
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Figures 8 Point Cloud Cleaning from 50m Flight and 200m Flight 
                                                                                                    

 111111111111111111111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111111111111111111111 



 34 

Flight CHM 
Point cloud 

densities 

50m 

 

Vegetation : 

6 627 708 

Ground :  

1 805 856 

200m 

 

Vegetation : 

411 330 

Ground : 

103 874 

Figures 9 CHM Distribution from 50m Flight and 200m Flight in Cloud Compare  

Tables  2 LiDAR Points Cloud Classification Standard Codes  

N0 Code Value Meaning 

1 0 never classified 
2 1 Unassigned 
3 2 Ground 
4 3 Low Vegetation 
5 4 Medium Vegetation 
6 5 High Vegetation 
7 6 Building 
8 7 Low noise 
9 8 high noise 
10 9 Water 
11 10 Rail 
12 11 Road Surface 
13 12 Bridge Deck 
14 13 Guard 
15 14 Conductor 
16 

Z17 
15 Transmission Tower 

17 16 structure connector 
18-64 17-63 Reserved 

65-256 64-255 User definable 
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3.10 DTM and DSM Generation from las File  

 The las classified, applied ArcGIS tool to convert it to a raster. First, las 

datasets were created by input las data. The result was lasd format which can be 

displayed and filter our point cloud data. In the next step, a raster was created by las 

dataset to raster. The file value was set to elevation. A binning approach was included 

and assigned to the nearest cell which is the void fill method as natural neighbor. The 

raster was resampled to 10 cm which is the same as the output from photogrammetry 

software. The interpolation mainly depends on the characteristics of the data. The 

comparison of two interpolation methods Kriging and inverse distance weighted (IDW) 

studied by Romero-Toro-Gascueña et al. (2011) showed that kriging provides less 

errors than IDW. Another experiment of Montealegre, Lamelas, and Riva (2015) found 

that triangulated Irregular Network (TIN) to raster interpolation and IDW were the best 

result for interpolation. Jurjević et al. (2020) generated 50 cm resolution of DTM using 

the binning approach. Guerra et al. (2016) applied natural neighbor interpolation 

method after point cloud classification same as Osińska-Skotak, Bakuła, Jełowicki, and 

Podkowa (2019) which applied natural neighbor to generate DTM and DSM as well.  

In this study, the initial results of the pre-processing, application of interpolation 

methods, showed that mainly the natural neighbor results are comparable with other 

interpolation methods in ArcGIS. 

 

 
 

Figures 10 CHM Data Processing and Extraction From las Files 
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3.11 Buffering Tree Location  

 He et al. (2019); Panagiotidis et al. (2017); Zhou, Wang, Di, Lu, and Guo 

(2020) applied local maxima to generate seeds at the treetop, the highest pixel value 

treetop were derived by CHM. This method was challenged with cashew crown covers 

which have complex leaves. In addition Tian et al. (2019) proposed two new methods 

of crown cover area to extract tree height, individual tree localization (ITL) and canopy 

height model (CHM) seed points (CSP) were discussed. The ITL is based on DEM 

raster localization with a grid size of 20 cm × 20 cm and was used to automatically 

identify and mark center of grid after calculating tree height. Tree crown and center of 

tree are challenging which may affect the extraction results. In the present research, 

extraction of tree height were based on tree locations which were collected during field 

work. There were 5 buffer ranges applied 0 cm, 50 cm, 100 cm, 150 cm, and 200 cm 

(Figure 11). 200 cm was the maximum tree crown of 200 cm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 11 The Buffering Tree Locations Applied in Our Experiments 
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3.12 Canopy Height Model (CHM) Generation        

3.12.1 Canopy Height Model Calculation 

 We first import the output of UAV images into ArcGIS desktop, and then 

generated CHMs by identifying the DSM value in each pixel by subtracting ground 

point represent DTM value which is possible to be calculated as follows (Equation 1):  

CHM = DSM – DTM   (1) 

Where CHM is canopy height model, DTM is digital terrain model and DSM is digital 

surface model. 

 CHMs are generated using Equation (1) in order to find the height value of 

the DSM in each pixel and subtracting the corresponding DTM value(Zainuddin et al., 

2016). When the DSM value less than the DTM value, so the CHMs value in a pixel 

is set to 0 (He et al., 2019). 

3.12.2 Individual Tree Height Extraction   

   The tree height was defined from above ground height model and real height. 

It was interpreted by human eyes. In order to estimate individual tree height from 

ground, most previous studied applied filtering methods to the above ground height 

model which stored were in a raster format. This was done by applying a local 

maximum or the morphological filter-focal statistic tool in ArcGIS which focal 

statistics known as a filtering tool that possible to identify treetop location based on a 

maximum value (Panagiotidis et al., 2017).  Examples of a previous study A. C. Birdal 

et al. (2017)Birdal, Avdan [15]Birdal, Avdan [15]Birdal, Avdan [27], they 

experimented to point out differences between the kernel and the circular-shape areas 

selected. Radius kernel was successfully applied at 8 kernels while testing kernel 

ranges of 𝑟𝑚 ∈ {1, 2, 3 … 18}. It was experimented various neighborhood operation 

from focal statistic calculation (majority, maximum, mean, median, minimum, 

minority, range, standard deviation, sum, and variety) in order to compute the best 

output raster in a specified neighborhood around a location. In addition, they have 

applied a conditional tool (Con), in order to match the pixel values (Equation 2) 

between CHM and focal statistic result. The conditional if/else was used to remove 0 

value from pixel and assigned value to 1. 

Con ('CHM'=='focal statics result', 1)     (2) 
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Where Con is conditional tool, CHM is canopy height model and focal statics result is 

result from focal static tool in ArcGIS. 

 The selected tree cannot be applied to local maxima to identify treetops. The 

result was too many seeds generated from moving window and this method seemed not 

work well in the present research. Therefore, the buffer tools in ArcGIS to extract tree 

height were assigned to tree locations. Zonal statistic (Hentz, Dalla Corte, Netto, 

Strager, & Schoeninger, 2018; Zainuddin et al., 2016) was applied to extract tree height 

based on input features from buffers and input CHM which represent tree height. It was 

used for evaluation which considered to be the treetops compared with ground truth 

data. 

 

 

Figures 12 CHM Extraction Model for Both 50m Flight and 200m Flight 

 

 In this study, ID was used to represent our extractions from different 

experiments, tree heights from photogrammetry product and point cloud 

classification). Results from the 50 m flights were marked with an “A”.  “B” was 

assigned to the results of 200m flights (Table 3). 
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Tables  3 The ID Used to Indicate the Results from Difference Flights and 

Experiments  
 

ID     Name 

A001 CHM_50m_Point_Could_ZonalSta_100cm_buffer 

A002 CHM_50m_Point_Could_ZonalSta_150cm_buffer 

A003 CHM_50m_Point_Could_ZonalSta_200cm_buffer 

A004 CHM_50m_Point_Could_ZonalSta_50cm_buffer 

A005 CHM_50m_Point_Could_ZonalSta_no_buffer 

A006 50m_cos_geo_CHM_ZonalSta_100cm_buffer 

A007 50m_cos_geo_CHM_ZonalSta_150cm_buffer 

A008 50m_cos_geo_CHM_ZonalSta_200cm_buffer 

A009 50m_cos_geo_CHM_ZonalSta_50cm_buffer 

A010 50m_cos_geo_CHM_ZonalSta_no_buffer 

A011 50m_de_geo_CHM_ZonalSta_100cm_buffer 

A012 50m_de_geo_CHM_ZonalSta_150cm_buffer 

A013 50m_de_geo_CHM_ZonalSta_200cm_buffer 

A014 50m_de_geo_CHM_ZonalSta_50cm_buffer 

A015 50m_de_geo_CHM_ZonalSta_no_buffer 

A016 50m_de_no_CHM_ZonalSta_100cm_buffer 

A017 50m_de_no_CHM_ZonalSta_150cm_buffer 

A018 50m_de_no_CHM_ZonalSta_200cm_buffer 

A019 50m_de_no_CHM_ZonalSta_50cm_buffer 

A020 50m_de_no_CHM_ZonalSta_no_buffer 

A021 50m_cos_no_CHM_ZonalSta_100cm_buffer 

A022 50m_cos_no_CHM_ZonalSta_150cm_buffer 

A023 50m_cos_no_CHM_ZonalSta_200cm_buffer 

A024 50m_cos_no_CHM_ZonalSta_50cm_buffer 

A025 50m_cos_no_CHM_ZonalSta_no_buffer 

B001 CHM_200m_Point_Could_ZonalSta_100cm_buffer 

B002 CHM_200m_Point_Could_ZonalSta_150cm_buffer 

B003 CHM_200m_Point_Could_ZonalSta_200cm_buffer 

B004 CHM_200m_Point_Could_ZonalSta_50cm_buffer 

B005 CHM_200m_Point_Could_ZonalSta_no_buffer 

B006 200m_cos_geo_CHM_ZonalSta_100cm_buffer 

B007 200m_cos_geo_CHM_ZonalSta_150cm_buffer 

B008 200m_cos_geo_CHM_ZonalSta_200cm_buffer 

B009 200m_cos_geo_CHM_ZonalSta_50cm_buffer 

B010 200m_cos_geo_CHM_ZonalSta_no_buffer 

B011 200m_de_geo_CHM_ZonalSta_100cm_buffer 

B012 200m_de_geo_CHM_ZonalSta_150cm_buffer 

B013 200m_de_geo_CHM_ZonalSta_200cm_buffer 

B014 200m_de_geo_CHM_ZonalSta_50cm_buffer 

B015 200m_de_geo_CHM_ZonalSta_no_buffer 

B016 200m_de_no_CHM_ZonalSta_100cm_buffer 

B017 200m_de_no_CHM_ZonalSta_150cm_buffer 

B018 200m_de_no_CHM_ZonalSta_200cm_buffer 



 40 

ID     Name 

B019 200m_de_no_CHM_ZonalSta_50cm_buffer 

B020 200m_de_no_CHM_ZonalSta_no_buffer 

B021 200m_cos_no_CHM_ZonalSta_100cm_buffer 

B022 200m_cos_no_CHM_ZonalSta_150cm_buffer 

B023 200m_cos_no_CHM_ZonalSta_200cm_buffer 

B024 200m_cos_no_CHM_ZonalSta_50cm_buffer 

B025 200m_cos_no_CHM_ZonalSta_no_buffer 
 

 In table above, 50 and 200 represent 50m and 200m flight, CHM represent Tree 

Height, ZonalSta represent zonal statistic, cos represent customized settings, de represent 

default settings, geo represent georeferenced, no represent no buffer, no represent no 

georeferenced, and Point Cloud represent results from point cloud-classification. 

 

Tables  4 Group CHM from Classification and Photogrammetry Produces 
 

                ID Group CHM extractions 

A001 B001 

CHM from Point Could Classifications 

A002 B002 

A003 B003 

A004 B004 

A005 B005 

A006 B006 

CHM from Photogrammetry Products- 

Customized with georeferenced methods 

A007 B007 

A008 B008 

A009 B009 

A010 B010 

A011 B011 

CHM from Photogrammetry Products- 

Defaults with georeferenced methods 

A012 B012 

A013 B013 

A014 B014 

A015 B015 

A016 B016 

CHM from Photogrammetry Products- 

Defaults with no-georeferenced methods 

A017 B017 

A018 B018 

A019 B019 

A020 B020 

A021 B021 

CHM from Photogrammetry Products- 

customized with no-georeferenced methods 

A022 B022 

A023 B023 

A024 B024 

A025 B025 

 



 41 

3.13 Statistical Analysis and Validation of Data 

 The most common methods to analyze statistically and validate height 

estimation and ground data are the root mean square error (RMSE), the coefficient 

determination (R2), mean absolute error (MAE), bias, and the linear regression applied 

to present relationship of data (A. Birdal, 2016; Kameyama & Sugiura, 2020; L. Li et 

al., 2020; Panagiotidis et al., 2017; Peng et al., 2021; Zainuddin et al., 2016). In this 

study, descriptive statistic was used to indicate our field measures and height 

estimation. Liang et al. (2013) were applied minimum, maximum, mean, and standard 

deviation from descriptive statistics to present their field data collection. In addition, 

Y.-Q. Li et al. (2015) used descriptive statistics to indicate, calibrate and validate data. 

Box and whisker plots were used to summarize the descriptive statistics into four parts, 

25% less than first quartile, 25% between first quartile (25 samples percentile) and 

second quartile (sample median or 50 sample percentile), 25% between second and 

third quartile (sample 75 percentile), and 25% larger than the third quartile (Ross, 

2014). Panagiotidis et al. (2017) applied quartile to distribute the height estimate and 

field measurements into three parts: quartile 1 (25% lower), quartile 2 (50% or median), 

and quartile 3 (75%). Secondly, RMSE was calculated in equation 3. The relative value 

in % is given in equation 4. The Bias is shown in equation 5 with the relative Bias in % 

equation 6. The mean absolute error (MAE) to show the estimation errors and compare 

to field measurement (Equation 7). Y.-Q. Li et al. (2015) applied RMSE to assess the 

precision of estimation as the small RMSE indicated to be a better result. They used 

coefficient of determination to show the relationship of field measurements and 

estimations to show that higher value has strong a relationship and fit to ground data. 

Bias and relative bias were used in their research as well. The used statistic to assess 

the difference of two variables with respect to ground data. Third, a linear regression 

was calculated to indicate how the estimated result fit observation data. The residual 

indicates goodness of the fit in comparison with field data. Additionally, exploration 

data and visualizations were used to clarify outliers from estimates with field 

measurements by using orthophoto from photogrammetry products. Finally, the 

determination of the difference of field measurements and height estimates were done 

by application of paired sample t-test (Panagiotidis et al., 2017). This is used to identify 
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the difference of mean between two paired differ from 0 (Equation 8), which assess two 

hypothesis (A. Birdal, 2016):  

 H0: there is no significance difference between field measured and 

estimated height at 95% significance level. If (μ1-μ2=0).  

 H0: there is significance difference between field measured and estimated 

height at 95% significance level. If (μ1-μ2≠0).   

 
        

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

 

(8) 

           

Where huav is the measured height of UAV 

hf  is height of field measurement 

n is the number of trees 

h is mean of height from field measurement n value  

MAE is an mean of absolute errors 

t is a paired t-test with n-1 degrees freedom 

df is the difference by mean of two variables 

s2  is sample variance. 

     

 The statistical analysis were computed mostly in data analysis tools of 

Microsoft Excel. The input data for the linear regression is field measurements vs 

predicted values. The output are regression residuals (the difference between field 

measurement and prediction), residual plots and line fit (relationship between field 

measurement and prediction). In Excel, data analysis tools can be used to test the 
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hypothesis, t-test: paired two sample for means, t-test: two samples assuming equal 

variances, t-test: two samples assuming unequal variances, z-test: two samples for 

means, ztest, ttest (Harmon, 2011). In this study, a t-test of paired two samples for 

means were used. T-test tools (Figure 13) can be done by following method below: 

 Variable 1: field measurement  

 Variable 2: predict results 

 Alpha: the level of significance 𝛼 = 0.05, p values < 0.05, two varriables 

significant difference   

 

 
 

Figures 13 T-Test: Paired Two Sample for Means in Excel 
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CHAPTER 4  

RESULT and DISCUSSION 

 

4.1 Image Processed Analysis  

The UAV images were processed separately with two tests. First, UAV images 

were analyzed with no GCPs marking in order to test onboard GPS compare to ground 

references and UAV images. Followed by two reprocessing steps in photogrammetry 

by adding and marking GCPs included checked points. GCPs design was 1.5 m x 1.5 

m which was created as a center cross by spraying red color on the ground. 9 GCPs 

(Figure 14) were collected during field works, respectively to GCPs recommendation 

from Pix4d.  Then 5 GCPs were used, 4 at the corner and 1 at the center. Others were 

used for checked points, and we used as 4 checked points. The absolute geolocation 

variance was good with no GCPs in both flights of 50 m and 200 m (Table 5) while 

RMSE contained less than 20 cm error in the geolocation error in X and Y direction, 

and about 50 cm for Z direction without GCPs marking for both flights. However, the 

performance of the GCPs marking was not very well. The RMSE was larger than 1 m 

in X and Y direction and in Z direction it varied between 2 to 5 m for both flights.    

……… 

…………………………………………………………………………. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 9 GCPs placements                                              (b) : GCPs design 

Figures 14 GCPs Placement and Design 
0000000000000000000000000000000000000000000000000000000000000000000000 
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Tables  5 RMS Error in Images Processing from both 50m and 200m Flights 
 

RMS error X (m) Y (m) Z (m) Notes 

50m flight  
0.180248 0.091116 0.508473 Without GPCs 

0.723803 1.396227 2.722710 With GCPs 

200m 

flight 

0.168268 0.258000 0.304005 Without GCPs 

1.496264 0.866824 5.434951 With GPCs 

 

4.2 Tree Height Estimation 

 Ground truth data show that among 50 trees randomly selected the quartile 

median is 6.19 m while the maximum is 8.34 m and the minimum is 4.17 m. The 

estimations were similar to ground data for both flights based on point cloud 

classification. Most results were less than 1 m. However, the similar results of quartile 

from photogrammetric software of the 50 m flight are A011, A012, A013, A016, A017, 

A018, A019, and A020 with medians of 5.78 m, 5.83 m, 5.92 m, 5.37 m, 4.85 m, 5.78 

m, 5.83 m, 5.92 m, 5.37 m, and 4.85 m. The minimum values were 3.09 m, 3.55 m, 

3.68 m, 2.28 m, 0.01 m, 3.09 m, 3.55 m, 3.68 m, 2.28 m, and 0.01 m. The maximum 

values were 7.55 m, 9.89 m, 9.89 m, 6.79 m, 6.26 m, 7.55 m, 9.89 m, 9.89 m, 6.79 m, 

and 6.26 m (Table 6). In table 7, the results from the photogrammetric software of the 

200 m flight are only B011, B012, B013, B016, B017, B018, and B023 which the 

median are 5.38 m, 5.71 m, 5.83 m, 5.38 m, 5.71 m, 5.83 m, and 4.61 m. The maximum 

values were 6.83 m, 6.98 m, 7.43 m, 6.83 m, 6.98 m, 7.43 m, and 6.28 m. The minimum 

values were 2.15 m, 2.15 m, 2.95 m, 2.15 m, 2.15 m, 2.95 m, and 2.05 m. Others 

contained predicted values larger than 1 m which means that compare to ground data, 

the results were lower.  

 Root mean square error (RMSE) indicates that the prediction errors were 

mostly less than 1 m for A001, A002, A003, A004, A005, B001, B002, B003, B004, 

B005, B011, B017, B018 and B019 were 0.60 m, 0.54 m, 0.56 m, 0.73 m, 1.13 m, 0.96 

m, 0.80 m, 0.73 m, 1.21 m, 1.62 m, 1.13 m, 0.94 m, 0.81 m, and 1.33 m. Similarly, the 

bias were not much difference of prediction results and field measurement which the 

bias are -0.10, 0.03, 0.15, -0.33, -0.83, -0.64, -0.44, -0.28, -0.96, -1.37, -0.80, -0.58, -

0.41, and -1.00. In addition, MAE were 0.10, 0.03, 0.15, 0.33, 0.83, 0.64, 0.44, 0.28, 

0.96, 1.37, 0.80, 0.58, 0.41, and 1.00. It was shown that A006, A007, A008, A009, 

A010, A021, A022, A023, A024, and A025 are similar to B006, B007, B008, B009, 
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B010, B012, B013, B014, B015, B016, B020, B021, B022, B023, B024, and B025. 

They show high RMSE, bias, and MAE ranges from 3.50 m to 4.50 m, -3.57 m to -0.32 

m, and 0.32 m to 3.57 m prediction errors (Table 8).   

 Box and whisker indicated that the predicted results of A001 to A005, B01 to 

B05, and B011, B016, B017, B018, B019 were similar to the estimated results. In 

comparison to field measurements, the field median result was 6.19 m while the 

predicted results were 6.74 m, 6.83 m, 6.93 m, 6.58 m, 5.98 m, 5.55 m, 5.75 m, 5.80 m, 

5.19 m, 4.84 m, 5.38 m, 5.38 m, 5.71 m, 5.83 m, and 5.32 m. The others estimations 

were extremely low compared to ground data, for example, the estimates of A020 to 

A025 were 4.85, 2.70, 3.02, 3.40, 2.37, and 2.01 (Figure 15).   

 Radius plots show that A001, A002, A003, A004, B001, B002, B003, B004, 

B011, B012, B013, B017, and B018 contained a lower prediction error compared to 

field data which range from 1 to -1 and MAE were 0.10, 0.03, 0.15, 0.33, 0.64, 0.44, 

0.28, 0.96, 0.80, 0.58, 0.58, and 0.41. Mostly, other predictions were underestimated 

with a MAE larger than 1 m to less than 3.57.  

 The regression indicates that A001 has a medium relationship. R2 was 0.55. 

A002 and A003 had similar results 0.60. A004 and A005 had a low relationship from 

0.49 and 0.40 (Figure 16). The data from the 200 m flight show that the R2 range from 

0.40 to 0.45 with B001, B002, B003, B005, B011, B017, B018, and B019. B004 shows 

the highest R2 value of 0.49 (Figure 17). The best results of height estimation of both 

flights are A002 and B004 with RMSE, MAE, R2 of 0.54, 0.03, 0.60 and 1.21, 0.96, 

0.48. 

Tables  6 Descriptive Statistic Summarized of Tree Height Estimations and 

Reference Data from 50m Flight 
 

- Q0 Q1 Q2 Q3 Q4 

Ref 4.17 5.65 6.19 6.97 8.34 

A001 4.18 5.52 6.16 6.74 7.90 

A002 4.37 5.58 6.17 6.83 7.90 

A003 4.63 5.62 6.24 6.93 8.07 

A004 3.45 5.33 6.02 6.58 7.41 

A005 2.19 4.93 5.51 5.98 6.78 

A006 0.02 1.25 2.70 4.05 6.04 

A007 0.12 1.65 3.02 4.39 6.13 

A008 0.15 2.16 3.40 4.48 6.13 
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- Q0 Q1 Q2 Q3 Q4 

Ref 4.17 5.65 6.19 6.97 8.34 

A009 0.02 0.71 2.37 3.92 5.76 

A010 0.00 0.45 2.01 3.72 5.45 

A011 3.09 5.07 5.78 6.06 7.55 

A012 3.55 5.15 5.83 6.30 9.89 

A013 3.68 5.19 5.92 6.30 9.89 

A014 2.28 4.80 5.37 5.91 6.79 

A015 0.01 4.05 4.85 5.55 6.26 

A016 3.09 5.07 5.78 6.06 7.55 

A017 3.55 5.15 5.83 6.30 9.89 

A018 3.68 5.19 5.92 6.30 9.89 

A019 2.28 4.80 5.37 5.91 6.79 

A020 0.01 4.05 4.85 5.55 6.26 

A021 0.02 1.25 2.70 4.05 6.04 

A022 0.12 1.65 3.02 4.39 6.13 

A023 0.15 2.16 3.40 4.48 6.13 

A024 0.02 0.71 2.37 3.92 5.76 

A025 0.00 0.45 2.01 3.72 5.45 

 

In the table: Ref is reference data or field measured and Q is quartiles (Q0: minimum 

value, Q1: 25% (lower), Q2: 50% (median), Q3: 25% (upper), and Q4: maximum 

value). 

Tables  7 Descriptive Statistic Summarized of Tree Height Estimations and 

Reference Data from 200m Flight 
 

- Q0 Q1 Q2 Q3 Q4 

Ref 4.17 5.65 6.19 6.97 8.34 

B001 2.98 5.04 5.55 6.14 6.96 

B002 3.99 5.17 5.75 6.25 7.36 

B003 3.99 5.38 5.80 6.65 7.44 

B004 2.24 4.74 5.19 5.96 6.71 

B005 1.87 4.23 4.84 5.59 6.61 

B006 1.58 3.53 4.36 4.77 6.03 

B007 1.82 3.81 4.48 4.94 6.25 

B008 2.05 3.90 4.61 5.20 6.28 

B009 1.42 2.92 4.08 4.60 5.79 

B010 0.01 2.40 3.74 4.37 5.58 

B011 2.15 4.96 5.38 6.06 6.83 

B012 2.15 5.03 5.71 6.23 6.98 

B013 2.95 5.16 5.83 6.36 7.43 

B014 1.23 4.70 5.32 5.96 6.58 

B015 1.21 4.34 5.01 5.76 6.46 

B016 2.15 4.96 5.38 6.06 6.83 
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- Q0 Q1 Q2 Q3 Q4 

Ref 4.17 5.65 6.19 6.97 8.34 

B017 2.15 5.03 5.71 6.23 6.98 

B018 2.95 5.16 5.83 6.36 7.43 

B019 1.23 4.70 5.32 5.96 6.58 

B020 1.21 4.34 5.01 5.76 6.46 

B021 1.58 3.53 4.36 4.77 6.03 

B022 1.82 3.81 4.48 4.94 6.25 

B023 2.05 3.90 4.61 5.20 6.28 

B024 1.42 2.92 4.08 4.60 5.79 

B025 0.01 2.40 3.74 4.37 5.58 

 

In the table: Ref is reference data or field measured and Q is quartiles (Q0: minimum 

value, Q1: 25% (lower), Q2: 50% (median), Q3: 25% (upper), and Q4: maximum 

value). 

Tables  8 The Estimation and Ground Truth from Both 50m Flight and 200m Flight 
 

- Bias 
Bias 

(%) 

RMS

E(m) 

RMS

E 

(%) 

MA

E(m) 
R2 

A001 -0.10 -1.59 0.60 9.64 0.10 0.5598 

A002 0.03 0.50 0.54 8.81 0.03 0.5985 

A003 0.15 2.35 0.56 9.07 0.15 0.5986 

A004 -0.33 -5.34 0.73 11.85 0.33 0.4885 

A005 -0.83 -13.48 1.13 18.31 0.83 0.3952 

A006 -3.57 -57.67 3.89 62.92 3.57 0.1913 

A007 -3.27 -52.83 3.61 58.42 3.27 0.1879 

A008 -2.99 -48.35 3.34 54.03 2.99 0.1876 

A009 -3.84 -62.14 4.15 67.15 3.84 0.1946 

A010 -4.13 -66.69 4.41 71.21 4.13 0.2006 

A011 -0.67 -10.77 1.17 18.99 0.67 0.1387 

A012 -0.44 -7.13 1.16 18.72 0.44 0.122 

A013 -0.32 -5.24 1.10 17.80 0.32 0.1096 

A014 -0.97 -15.65 1.39 22.39 0.97 0.1384 

A015 -1.51 -24.37 1.89 30.48 1.51 0.1455 

A016 -0.67 -10.77 1.17 18.99 0.67 0.1455 

A017 -0.44 -7.13 1.16 18.72 0.44 0.122 

A018 -0.32 -5.24 1.10 17.80 0.32 0.1096 

A019 -0.97 -15.65 1.39 22.39 0.97 0.1384 

A020 -1.51 -24.37 1.89 30.48 1.51 0.1455 

A021 -3.57 -57.67 3.89 62.92 3.57 0.1913 

A022 -3.27 -52.83 3.61 58.42 3.27 0.1879 

A023 -2.99 -48.35 3.34 54.03 2.99 0.1876 

A024 -3.84 -62.14 4.15 67.15 3.84 0.1946 
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- Bias 
Bias 

(%) 

RMS

E(m) 

RMS

E 

(%) 

MA

E(m) 
R2 

A025 -4.13 -66.69 4.41 71.21 4.13 0.2006 

B001 -0.64 -10.37 0.96 15.46 0.64 0.4392 

B002 -0.44 -7.15 0.80 12.87 0.44 0.4465 

B003 -0.28 -4.52 0.73 11.80 0.28 0.4327 

B004 -0.96 -15.58 1.21 19.51 0.96 0.4852 

B005 -1.37 -22.11 1.62 26.19 1.37 0.4169 

B006 -2.04 -33.02 2.35 37.95 2.04 0.0808 

B007 -1.86 -30.03 2.19 35.37 1.86 0.0565 

B008 -1.71 -27.68 2.06 33.28 1.71 0.0615 

B009 -2.34 -37.81 2.60 42.11 2.34 0.1946 

B010 -2.80 -45.28 3.09 49.90 2.80 0.1815 

B011 -0.80 -12.91 1.13 18.20 0.80 0.4144 

B012 -0.58 -9.37 0.94 15.23 0.58 0.122 

B013 -0.41 -6.70 0.81 13.13 0.41 0.1096 

B014 -1.00 -16.20 1.33 21.55 1.00 0.1384 

B015 -1.30 -20.94 1.67 26.96 1.30 0.3735 

B016 -0.79 -12.85 1.13 18.24 0.79 0.1455 

B017 -0.58 -9.37 0.94 15.23 0.58 0.416 

B018 -0.41 -6.70 0.81 13.13 0.41 0.4377 

B019 -1.00 -16.20 1.33 21.55 1.00 0.4009 

B020 -1.30 -20.94 1.67 26.96 1.30 0.1455 

B021 -2.04 -33.02 2.35 37.95 2.04 0.0808 

B022 -1.86 -30.03 2.19 35.37 1.86 0.0565 

B023 -1.71 -27.68 2.06 33.28 1.71 0.0615 

B024 -2.34 -37.81 2.60 42.11 2.34 0.1311 

B025 -2.80 -45.28 3.09 49.90 2.80 0.1815 
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Figures 15 Box Whisker Plot of the Estimation and Ground Truth from Both 50m 

Flight and 200m Flight  
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Figures 16 Linear Regression Model of the Estimation and Ground Truth from 

50m Flight 
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Figures 17 Linear Regression Model of the Estimation and Ground Truth from 

50m Flight (cont.) 
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Figures 18 Linear Regression Model of the Estimation and Ground Truth from 

50m Flight (cont.)  
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Figures 19 Linear Regression Model of the Estimation and Ground Truth from 50m 

Flight (cont.) 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

Figures 20 Linear Regression Model of the Estimation and Ground Truth from 

200m Flight 
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Figures 21 Linear Regression Model of the Estimation and Ground Truth from 

200m Flight (cont.) 
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Figures 22 Linear Regression Model of the Estimation and Ground Truth from 

200m Flight (cont.) 

 

 
 

B015 

 

y = 0.3799x + 4.3275 

R² = 0.3735 

RMSE = 1.67 

 

B016 

 

y = 0.2732x + 4.9076  

R² = 0.1455 

RMSE = 1.13 

 

y = 0.5752x + 2.9611 

R² = 0.416 

RMSE = 0.94 

 

B017 

xv 

B018 

 

y = 0.6271x + 2.5663 

R² = 0.4377 

RMSE = 0.81 

 

B019 

 

y = 0.4641x + 3.78 

R² = 0.4009 

RMSE = 1.33 

 

y = 0.2732x + 4.9076 

R² = 0.1455 

RMSE = 1.67 

 

B020 

 

y = 0.2173x + 5.2852 

R² = 0.0808 

RMSE = 2.35 

 

B021 

 

B022 

 

y = 0.1908x + 5.3597 

R² = 0.0565 

RMSE = 2.19 
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Figures 23 Linear Regression Model of the Estimation and Ground Truth from 

200m Flight (cont.) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figures 24 Residual Plots of the Estimation and Ground Truth from 50m Flight 
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y = 0.249x + 5.3429 
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B025 

 

B024 

 

y = 0.2599x + 5.1858 

R² = 0.1311 

RMSE = 2.60 
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Figures 25 Residual Plots of the Estimation and Ground Truth from 50m Flight 

(cont.)  
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Figures 26 Residual Plots of the Estimation and Ground Truth from 50m Flight 

(cont.) 
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Figures 27 Residual Plots of the Estimation and Ground Truth from 50m Flight 

(cont.) 
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Figures 28 Residual Plots of the Estimation and Ground Truth from 200m Flight 

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………. 
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Figures 29 Residual Plots of the Estimation and Ground Truth from 200m Flight 

(cont.) 
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Figures 30 Residual Plots of the Estimation and Ground Truth from 200m Flight 

(cont.) 
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4.3 Significance Difference of Tree Height Estimation  

 A001, A002, A003, A004, and A005 for 50m flight and B001, B002, B003, 

B004, B005, B011, B017, B018, and B019 were selected to compare in t-test as follow:  

• Tree height estimated with ground data  

• Tree height estimated with tree height estimated   

 The result shows that P values larger than 0.05, can’t be rejected from the 

hypothesis of paired reference data with A001, A002, A003, and B019 and B004. 

However, P values less than 0.05, can be rejected from the hypothesis of reference 

data with A004, A005, B001, B002, B003, B004, B005, B011, B018, B019, and B018 

and B003, B019 and A004, B011 and A001, B017 and A002, B018 and A003, B001 

and A001, B002 and A002, B003 and A003, B004 and A004, B011 and B001, B017 

and B002, B005 and A005. 

Tables  9 Sample Paired T-Test of Tree Height Estimation and Ground Data 
 

Significance 

P(T≤t) 

two tail 

t test 

t critical two 

tail 

t test 

t start df 

Ref and A001 0.25     2.01 1.170 49 

Ref and A002 0.70 2.01 -0.40 49 

Ref and A003 0.07 2.01 -1.87 49 

Ref and A004 0.00 2.01 3.54 49 

Ref and A005 0.00 2.01 7.62 49 

Ref and B001 0.00 2.01 6.33 49 

Ref and B002 0.00 2.01 4.67 49 

Ref and B003 0.00 2.01 2.89 49 

Ref and B004 0.00 2.01 9.27 49 

Ref and B005 0.00 2.01 11.02 49 

Ref and B011 0.00 2.01 7.04 49 

Ref and B017 0.00 2.01 5.46 49 

Ref and B018 0.00 2.01 4.15 49 

Ref and B019 0.00 2.01 7.99 49 

B019 and B004 0.45 2.01 -0.77 49 

B011 and B001 0.01 2.01 -2.63 49 

B017 and B002 0.02 2.01 -2.42 49 

B018 and B003 0.00 2.01 -2.79 49 

B019 and A004 0.00 2.01 -6.89 49 

B011 and A001 0.00 2.01 -7.64 49 

B017 and A002 0.00 2.01 -8.81 49 

B018 and A003 0.00 2.01 -9.34 49 

B001 and A001 0.00 2.01 -8.59 49 

B002 and A002 0.00 2.01 -9.46 49 

B003 and A003 0.00 2.01 -8.87 49 
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4.4 Uncertainty of Tree Height Estimation   

 In the present study, the height estimation was not well distributed. Very low 

accuracy of height estimation was achieved by photogrammetry products. The 

consequence is a huge bias and big error. This is caused by field data collector, the 

equipment uses, the effect of weather, methods applied in both data collection and data 

processing.   

Tables  10 Uncertainty Tree Height Estimation   

Types errors How we used limitation solutions 

Design height 

meters 

We used pipe and 

cut it into many 

parts. But we have 

to make sure, it is 

removable fast 

and easy. 

During 

measurement, it 

not similar with 

original meters, it 

sometimes curves. 

We tried to 

place near to 

tree measured 

to make sure it 

not curves too 

much. 

Design GCPs  

We spay on the 

red color on 

ground. 1.5 x 1.5 

Take 2 hours to 

design 9 GCPs 

We tried to 

plan GCPs 

placements 

before go to 

field. 

Field 

measurement  

We used two 

persons, one 

respond for place 

the design meters 

at center of tree 

and hold it to top 

of tree 

Some dense tree 

difficult to see top 

Need to find 

suitable angle 

to see 

Tree location 
We placed emlid 

at the tree stump. 

Cashew are not 

straight stand 

trees. 

We assume 

the tree 

location is tree 

stump 

Tree crown 

- 

Some of tree 

crown overlap 

with others trees. 

- 

UAVs  Auto capturing 

function: iso, 

sutter speed, 

Image quality 

effect during 

capturing 

- 

Bad weather  
We met cloudy 

situation 

UAVs setting is 

complicated 

Wait until 

weather better, 

but impossible 

Small plant  
- 

Effect to point 

cloud density 
- 
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Sources  How we do? Bias 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Types errors How we used limitation solutions 

Photogrammetry 

used Explore setting 

Our computer 

very low 

specification 

Try cloud 

processing 

DTM and DSM 

settings 

Change both 

flight to 

5.48cm/pix 

Effect to 

photogrammetry 

output 

Classify point 

cloud 

CFS filtering Classify ground 

and none ground 

Low vegetation 

not well class 

Assign point 

clouds  

Resampling  
Change to 10cm 

Effect to results 
- 

50m flight 

200m flight 
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Sources  How we do? Bias 

orthophoto 

 

 

 

 

 

 

 

 

 

 

 

Field measure =5.3m  

Estimation =7m 

 

 

 

 

 

 

 

 

 

Field measure  =7m 

 

Estimation =5m 

 

Figures 31 Individual Tree Height Bias Exploration 
 

4.5 Discussion   

 In the previous studies, various method has been applied to estimate tree 

heights from low-cost UAV with different camera and different sensors. Most previous 

research indicated results based on R2, Linear regression model, RMSE, and Bias 

(Lussem, Schellberg, & Bareth, 2020; Paneque-Gálvez et al., 2014; Zainuddin et al., 

2016). In our study, the GCPs designed showed that a RMSE of 1 cm is possible to get 

high accuracy for alignment of our images. However, there were several factors 

effected the obtained UAVs image quality, e.g., the bad weather condition. It was 

noticed that huge clouds moved around our study area during field data collection. The 

images were partly grayish covered (cloud block) during the 50 m flight. The 200 m 

flight produced better imagery. As a consequence, the applied GCPs show low accuracy 

which resulted from less light on the ground caused by tree crown cover, capture angles, 

and placement of GPCs. Instead of it, no GCPs were used in the resulted images to 

generate CHM, hence, another geo-referenced CHM was used for comparison. In this 

study, tree heights were generated from two sources, one from photogrammetry 
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software and one from semi-automatic point cloud classification. The resampling 

method was applied with high resolutions of 10 cm. The image processing was divided 

into different steps for both flights, 50 m, and 200 m, to test which setting should be 

used for tree height extraction and CHM from low-cost UAV to determine the height 

of cashew trees.   

 CHM extractions were divided into 5 groups. The first group relied CHM 

extraction from point cloud classification which was represented in different settings 

used in A001 to A005 and B001 to B005. Second group consisted of CHM extraction 

from photogrammetry with customized set up and with georeferenced which is shown 

in A006 to A010 and B006 to B010. Third group was based on CHM extraction from 

photogrammetry with defaults settings and geo-reference. It is represented in A011 to 

A015 and B011 to B015. Fourth group used CHM extraction from photogrammetry 

with defaults settings and no-georeferenced. It is given in A016 to A020 and B015 to 

B020. Fifth group was based on CHM extraction from photogrammetry with 

customized settings and no-georeferenced settings, A021 to A025 and B021 to B025. 

The results show that photogrammetry products indicated variations of 1 m for the tree. 

Among 40 differences were shown in the results based on different settings. In total 4 

setting was acceptable from the 200 m flight, B011, B017, B018, and B019. The R2 

range was from 0.40 to 0.44. However, semi-automatic point cloud classification 

provides better results with R2 range of 0.40 to 0.60. The highest R2 value of the 200 m 

flight is 0.49. It was noticed that 50 m flight provides better point clouds.  It contained 

cleaner values than the 200 m flight.  In comparison with a similar approach by 

Panagiotidis et al. (2017), the R2 value was about 0.75 in plot 1 and the mean absolute 

error was 2.62. Furthermore, Lim Ye et al. (2015) applied the differences of individual 

tree estimations from drone and ground truth data. The range was from 0 to 2 with root 

mean square error is 1.51. They used world view 3, UAV multispectral imagery, and 

terrestrial data to validate. The R2 was less than 1 compared to each method used. 

According to He et al. (2019) height estimation from mountainous terrain contained an 

R2 value of 0.83 respectively.   

 Compare to previous studied of extracting tree height from CHM, our result 

contained a lower accuracy which was caused by several factors (Table 10 and Figure 

20):  
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 The designed GCPs were not fully applied to aligned images. They were 

used for geo-referencing.   

 The pipe high were shorter as professional equipment for height 

measurement. Moreover, the measurement higher than 5 m was caused 

misleading results.  

 Cashew tree crowns are not easy to see the treetop due to the complex 

leaves.   

 The equipment used to measure was not high grade, the accuracy was less 

than 0.5 m. Measurement under tree and its limitation has been 

discussed(Bastos & Hasegawa, 2013; Morales & Tsubouchi, 2007; Næsset 

& Jonmeister, 2002; Sawaguchi, Nishida, Shishiuchi, & Tatsukawa, 2003)   

 Tree locations were based on stand of tree while some the cashew tree did 

not stand straight   

 Clouds affect the obtained images in at approx. 50 %, therefore, an auto 

aperture, with shutter speed and iso were used.   

 The differentiation of small vegetation from the ground caused difficulties. 

 Semi-automatic point cloud classification did not well classify during high 

flight attribute with low point cloud densities.   

 Resampling methods were not affected to the result of photogrammetric 

software. Previous studies have not yet mentioned about resample results 

from photogrammetric software   

 An example of bias from orthophoto T028, field measurement was less than 

the estimated 1.7 m which may caused by the provided the tree location. 

Tree location and height were measured at the same time based on a single 

point. In contrast, the extraction method, zonal statistics, calculated the 

highest point, maximum, of pixel values while it was based on tree stump. 

In contrast, T040 was field measurement larger than the estimated 2 m. The 

orthophoto were indicated that the buffering goes to non-vegetation. This 

caused a calculation of the highest values of none ground with ground and 

the result.     

 Systematic errors from image smoothing may to produce results with low 

accuracy.   

 The result of this study is may contain an acceptable accuracy due to the 

equipment applied.  The outcome of the research is enough for the purpose of it. It was 

shown that the used method can be used for forest monitoring variation respectively to 

forest management (Panagiotidis et al., 2017). 
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CHAPTER 5  

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion  

5.1.1 Considering with difference flight attributes, is there any difference 

of height estimation upon the altitude?   

 In our experiments, the flight used the same settings. The bias was less than 1 

m with mean absolute error less than 1 m from point cloud classification. Extreme bias 

were observed with photogrammetry products due to the bias larger than 1 m with mean 

absolute error range from 0.5 m to 4.4 m. Based on point cloud classification, the 50 m 

flight produced better results than the 200m flight. Processing of the data with 

photogrammetry products delivered inacceptable results for the 50 m flight with high 

bias. We can conclude that cashew height estimation from 50 m flight were good for 

the generation of tree heights from CHM in terms of point cloud classification. On the 

other hand, the generation of cashew tree height from photogrammetry products, 200 

m flight provided better results compared to ground data.   

5.1.2 How to choose correct flight attributes for tree height estimation?   

 In our experiment, the flight attribute depends on the target and the size of the 

project. The 50 m and the 200 m flight produced similar results. The use of GCPs in 

order to improve the accuracy of images, the 50 m flight allowed a selection. A marking 

of GCPs during the 200 m flight were complicated to select the center of GCPs even 

with a size of 1.5 m x 1.5 m. However, the used UAVs had a maximum speed at 3.9 

m/s for the 50 m flight. The large area took a very long time to capture, approx. 

1ha/5minutes. At an altitude of 200 m the flight velocity could be increased, however 

to be able to compare the results it was rejected. 

  

5.1.3 How does the accuracy of photogrammetry product performance in 

tree height estimation?    

 According to our experiment, the photogrammetry product applied to 

generate CHM were acceptable with 200 m while applying default settings with geo-

referenced (B011). The 200 m flight with default settings used geo-referenced or no 

geo-referenced (B017, B018, and B019). The results R2 show that B011 was 0.41, B017 

was 0.41, B018 was 0.43, B019 was 0.40. The product from 50 m flight all settings 

were low accuracy with R2 values of less than 0.2. The photogrammetry results from 
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200 m flight were comparable with 50 m flight, the t-test indicated no statistically 

significant difference.    

5.1.4 Extraction tree height from Canopy Height Model (CHM), which 

extraction methods (none-buffering and buffering) provide better 

accuracy? 

 The experiment with 5 different buffers, no buffer, 50 cm buffer, 100 cm 

buffer, 150 cm buffer, and 200 cm buffer showed for extraction of the 50 m flight 

different results, without buffer it was 0.83, with a 50 cm buffer was 0.33, with a 100 

m buffer was 0.10, with a 150 m buffer was 0.03 and with a 200 m buffer was 0.15. 

The extraction in 200 m flight without buffer was 1.37, with a 50 cm buffer was 0.96, 

with a 100m buffer was 0.64, with a 150 m buffer was 0.44 and with a 20 0cm buffer 

was 0.28. We can conclude that 150 cm buffer are suitable for 50 m flights and 200 cm 

buffer are suitable for 200 m flights.   

5.1.5 How does the accuracy of field measurement validate the tree 

estimated?     

 In our research, even though we used designed pipe meters to measure tree 

height. We were able to derive tree heights comparable with estimated results. The 

linear regression provided a medium relationship of R2 in the range of 0.40 to 0.60. In 

a comparison between ground data and estimates, there are no statically significant 

differences between buffers of 100 cm, 150 cm and 200 cm. We can conclude that our 

field data are acceptable with 50m flight using semi-automatic point cloud 

classification.   

 The focus of this study was to estimate the tree heights of cashew trees at 

Kulen Mountain using low-cost UAV. We generated CHM from our UAV images. Our 

results showed that we got lower accuracy compared to previous studies which is due 

to our images quality and some limitations from our equipment and techniques. The 

proposed method are possible for open terrains with less than 12 m as we used not 

professional equipment and cashew tree have complex leaves. Therefore, we had some 

issues in order to identify treetops. Furthermore, GCPs collected were not helpful due 

to the block of canopy. Regarding the performances of tree height estimation from UAV 

versus field measured, we can assume that the workflow of UAV is faster and 

effectively compared to field measurements which is time and resources consuming. 
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5.2 Recommendation  

 In our experiment, there are can be done some improvements in order to 

increase accuracy as most questions were not yet answered clearly. Especially the 

estimation of cashew tree height estimation using low-UAV is still tricky as it was the 

first experiment in Cambodia. In order to improve future experiment, some 

recommendations:   

 Comparison of various remote sensing applications use to derive high accuracy 

of height estimation from cashew trees  

 CHM model will be better to generate tree height estimation. If difference 

photogrammetry techniques are considerable due to the limitation of the 

positioning of images or image matching. In our research, accuracy of field 

measurement GCPs, tree height, and tree positions were challenging which need 

more improvement.  

 The photogrammetry method to generate DTM and DSM without applying 

smooth filtering and shape on surface. In our experiment, the smooth filtering and 

shape may affect the DTM automatic classification which lead almost all 

photogrammetry products got low accuracy.   

 Airsoft metaphase is another photogrammetry software, it is also good and may 

solve some limitations of our low accuracy.  

 In our works, we don’t use real time kinematic (RTK) from drone due to our 

DJI Phantom 4 RTK as it was not available. It collects data with real time which 

may provide better faster and more accurate data. It would enable the work in 

large scales.   

 Different flight altitudes from 50 m to 500 m could be tested. Additional testing 

with different overlaps. The speed of flight should be considered due to the size 

of future projects  

 Crown cover overlapping is hard to define. Measuring the tree height by 

extraction from CHM shall be considered with crown area.   

The buffering method should consider with tree crown and explore the underestimate 

or overestimate by using orthophoto overlap with buffer zone.
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