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ABSTRACT 

62910210: MAJOR: GEOINFORMATICS; M.Sc. (GEOINFORMATICS) 

KEYWORDS: Mangrove forests, Sea Level Rise, Remote Sensing;, GIS 

  NAYELIN PHORN : MANGROVE FORESTS CHANGES AND 

RESPONSES TO SEA LEVEL RISE BASED ON REMOTE SENSING AND GIS 

IN PKWS, CAMBODIA. ADVISORY COMMITTEE: JIANZHONG LU, , 

PHATTRAPORN SOYTONG 2021. 

  

Cambodia is a country that can be found rich in mangrove forests area. 

Cambodia’s mangrove forests are found along a coastline of 435 km that consists of 

Koh Kong province, Kampot, Sihanouk Ville, and Kep province. Mangrove forests in 

Cambodia are considered essential forests that provide food sources, shelters, and 

nurseries along the coastal zone. These mangrove ecosystems have decline and 

change to shrimp farming, salt farming, charcoal production, pollution, illegal 

logging, and threatened to climate change such Sea level rise (SLR). Sea level rise can 

be as a parameter to assess the vulnerability of coastal mangroves in Cambodia due to 

be Sea level rise can lead a significant impact on mangrove ecosystems. 

This research reveals the mangrove forests extraction and change from 

2015 to 2020. Then, the vulnerable area of mangrove forests due to three different 

SLR scenarios in Peam Krasop Wildlife Sanctuary (PKWS) in Cambodia. To extract 

the mangrove forests area in this study, Sentinel-2 multi-temporal data from 2015 to 

2020 were used to classify and identify the mangrove forests and other classes using 

Random Forest classifier Machine Learning in the Dzetsaka plugin in QGIS. For 

analyzed and produced the changes of mangrove forests map between 2015 to 2020 

using MOLUSCE in QGIS. To predict the vulnerable area of mangrove forests by 

future SLR, a model of Geospatial Model based on SRTM DEM and IPCC’s SLR 

scenarios will be used to delineate mangrove areas in 2020. Three different SLR 

scenarios have been adopted in this study such as SLR 40 cm, SLR 60 cm, SLR 1 m. 

For DEM data was SRTM that download from USGS, and this SRTM was created, 

manipulated, and processed in ArcMap. 

The experimental results are satisfactory, mangrove forest areas were 

estimated at 7157.90 ha in 2015, 7495.21 ha in 2016, 7337.47 ha in 2017, 6436.26 ha 

in 2018, 6761.66 ha in 2019, and 7045.64 ha in 2020. 
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Furthermore, mangrove forests in PKWS in this study were changed from 

7150.90 ha to 7495.21 ha (2015-2016), between this period, mangrove forests were 

significant increased by 337.31 ha. Mangrove forests in PKWS were changed from 

7495.21 ha to 7337.47 ha (2016-2017), between this period, mangrove forests were 

extremely decreased by 157.74 ha. Similarly, mangrove forests have continued to 

decrease 901.21 ha from 7337.47 ha to 6436.26 ha (2017-2018). However, mangrove 

forests started to increase 325.40 ha in PKWS in 2019, mangrove forests were 

changed from 6436.26 ha to 6761.66 ha (2018-2019). Between 2019 and 2020, 

mangrove forests have increased by approximately 283.98 ha mangrove forests have 

changed from 6761.66 ha to 7045.64 ha (2019-2020). The total long-term change in 

mangrove forests areas in PKWS from 2015 to 2020, mangrove forests were 

decreased 112.26 ha from 7157.90 ha to 7045.64 ha. 

Based on the result of the study finds that when sea level rise by 40 and 60 

cm, the mangrove forests areas are projected to be inundated or impacted on areas 

about 40.44 ha at the end of the twenty-first century, and mangrove forests areas are 

predicted future inundated by 53.14 ha beside increasing 1 m for high Sea level rise 

scenarios respectively. 
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CHAPTER 1 INTRODUCTION 

Mangrove forests are the significant ecosystems found along the tropical and 

subtropical coastlines (Veettil, 2019). Mangrove forests are helped to protect the 

coastal area from the waves, storms, living habitat from the wave energy, and provide 

the critical coastal zone ecosystem (Brinkman RM, 1997; Dahdouh-Guebas et al., 

2005; McIvor, 2012; Quartel, Kroon, Augustinus, Van Santen, & Tri, 2007). Despite, 

mangrove forests around 35% of the world have existed over the last two decades of 

the twenty century (Bosire et al., 2008; Valiela, Bowen, & York, 2001). Recent years, 

mangrove forests that found along coastlines of Cambodia have declined due to 

converting mangrove forests to aquacultures like shrimp farming, pollution, and 

threatened future climate change (Ward, Friess, Day, & Mackenzie, 2017). 

In order, Remote Sensing (RS) has assisted as a supportable technique in 

mangrove forests studies (Blasco, Aizpuru, & Gers, 2001; T. Kumar, Panigrahy, 

Kumar, & Parihar, 2012; Vaiphasa, 2006), that mangroves remote sensing found 

since 1956. RS has evolved with the hot spot issues including biophysical parameters 

inversion, mangrove distribution mapping, and monitor the extent of change in 

mangroves (Wang, Jia, Yin, & Tian, 2019). To map and monitor the extent change in 

mangroves was verified as the most challenging depend on a combination of existing 

field maps and Remote Sensing data. 

1.1 Mangroves in Cambodia 

Mangrove forests could be found in the Southwestern part of Cambodia between 

10º43’ -11º85’ N and 102º88’-104º44’ E. Cambodia's mangrove forests consist of 

Koh Kong, Sihanouk Ville, Kampot, and Kep province (FAO, 2010). Mangrove 

habitat conditions were cleared by anthropogenic activities such as converting 

mangrove forest areas to charcoal production, illegal exports, salt fields, and shrimp 

farming. These anthropogenic activities were reflected as the main factors that caused 

the reduction, decline, and threat to mangrove forests in Koh Kong and Kampot 

coastal, Cambodia (Bann, 1997; MoE, 2009). As reported by The Royal Government 

of Cambodia, the coastal zone has identified as in center to adapt to existing and 
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future impacts of climate change in Cambodia’s work. In recently, Koh Kong’s 

coastal area is threatened to loss of mangrove forests due to the climate change such 

as seawater intrusion, Sea level rise, storm surges, storms, heavy rain, flooding, 

drought, and water stress.  

1.1 Sea Level Rise in Cambodia 

Sea level rise will have a significant impact on mangrove ecosystems and as 

an indicator system for assessment on vulnerable coastal mangroves in Cambodia that 

caused by climate change developing by Intergovernmental Panel on Climate Change 

(IPCC, 2013). In previously studied have indicated that Sea level rise 1 m would lead 

to loss of 4444 ha of coastline in Koh Kong and significantly raise the risk of severe 

flooding in Koh Kong City. The observed mean sea level rise in Cambodia, a 10 cm 

rising has been observed already in the last 40 years, and Sea level is continuing to 

rise. According to previous studies on climate change in Cambodia was estimated that 

sea-level will rise in Koh Kong province from 40 to 60 cm by the end of the century. 

1.2 Research Objective and Problems 

Cambodia’s mangrove forests studies seem to lack data of mangrove forests 

change over time and how mangroves will face future Sea level rise. Over this 

problem, the purpose of this study is to apply the advanced technology by integrated 

Remote Sensing (RS) with Geographic Information System (GIS) tool to extract the 

mangrove forests at Peam Krasop Wildlife Sanctuary (PKWS) in Cambodia from 

2015 to 2020 using multi-temporal derived from Sentinel-2 images with Random 

Forest Classification. To enhance mangrove forests changes in PKWS from 2015 to 

2020 using MOLUSCE. Furthermore, to estimate the impacts of SLR on vulnerable 

areas of mangrove forests in PKWS, Cambodia by adopting the IPCC vulnerability 

assessment (IPCC, 2013) relied on the projection of Sea level rise by IPCC using a 

Geospatial model. In the aim of these problems, this study proposed an idea topic is 

“Mangrove Forests Changes and Responses to Sea Level Rise Based on Remote 

Sensing and GIS in PKWS, Cambodia”. In this perspective, the study assists to 

achieve the research objectives:  
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 To extract mangrove forests in Peam Krasop Wildlife Sanctuary (PKWS), 

Cambodia, from 2015 to 2020 using multi-temporal derived from Sentinel-

2 images with Random Forest Classification 

 To analyze mangrove forests changes in PKWS from 2015 to 2020 using 

MOLUSCE 

 To assess the vulnerable area of mangrove forests under different SLR 

scenarios using a Geospatial model based on IPCC’s SLR projection 

1.3 Research Questions 

 What are the mangrove forest areas in Peam Krasop Wildlife Sanctuary in 

Cambodia between 2015 to 2020 using multi-temporal data of Sentinel-2 

imageries with Random Forest classification? 

 What are the mangrove forest changes taken place in Peam Krasop Wildlife 

Sanctuary in Cambodia between 2015 to 2020 using MOLUSCE in QGIS? 

 What are the vulnerable area of mangrove forests under different Sea level 

rise scenarios using a Geospatial model? 

1.4 The Significant 

However, Mangrove RS has been studied since 1956, it still an interesting 

topic for researchers to do research on monitoring mangrove forests related to other 

sectors include natural resource, social-economic, and climate change.   

Addiction, Cambodia has known as rich mangrove forests and a vulnerable 

country to climate change. Sea level rise (SLR) can lead a significant impact and 

threat to the coastal area, include mangrove forests. Peam Krasop Wildlife Sanctuary 

(PKWS) in Cambodia is a wildlife area that supports a significant mangrove 

ecosystem and threatened to climate change. This study will use a different method 

from others and can help to update the distribution and changing in mangrove forests 

in PKWS, and to enhance the most commonly vulnerable areas of mangrove forests 

due to the impact of future SLR. The first, classification method has been select 

Random Forest algorithm combine with training data 240 samples. After testing the 

classification of the training sample with the Random Forest algorithm, the result can 
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be reliable and higher than 90% of overall accuracy. For this sample data collection 

can be used to validate the data in reliability. Second, our study was developed the 

Geospatial model to analyze the vulnerable areas of mangrove forests due to impact 

of SLR in Peam Krasop Wildlife Sanctuary while no available tide gauge data or 

history Sea level rise (SLR) data. In this, build Geospatial model by a combination of 

SRTM DEM with SLR scenarios based on IPCC’s SLR projection derived from 

IPCC’s CMIP5 model. For SLR projection in Koh Kong province as this research 

study area, SLR is estimated to rise from 40 to 60 cm by the end of the twenty-first 

century. For this Geospatial model, DEM will process and combine with three 

different SLR scenarios include SLR 40 cm, SLR 60 m based on IPCC’s CMIP5, and 

will develop one more SLR 1 m to see how mangrove forest faced to future Sa level 

rise (SLR) caused by climate change. 

1.5 Limitation of This Study 

For this study, Peam Krasop Wildlife Sanctuary (PKWS) is selected as the 

study area that a large area (25,897 ha) located in Koh Kong province, Cambodia, 

supporting a significant mangrove ecosystem.  Due to lack of data and different data 

sources, to extract mangrove forests and analyze changes in mangrove forests from 

2015 to 2020 were using multi-temporal Sentinel-2 images downloaded from ESA 

and USGS with Random forest machine learning in Dzetsaka plugin and analyze 

change using MOLUSCE in SCP plugin in QGIS. To assess the vulnerable area of 

mangrove forests under potential impact of Sea level rise, Digital Elevation Model is 

the main parameter to create the Geospatial modeling, and process the Sea level rise 

inundation based on SLR scenarios. The SRTM DEM data (30 meters’ resolution) is 

available to download from USGS, SRTM will be used in this study. Also, no SLR 

observation station in Cambodia, for future SLR or SLR scenarios were adopted by 

IPCC’s CMIP5 (2013). A geospatial model will be used to predict the future Sea level 

rise in Cambodia based on three different SLR scenarios such as SLR 40 cm, SLR 60 

cm, SLR 1m. This Geospatial model was use to overlay with mangrove forests land 

cover in 2020 to assess the vulnerable area of mangrove forests under different SLR 

scenarios.   
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CHAPTER 2 LITERATURE REVIEWS 

In the literature of this chapter, there is information about previous techniques 

studied. This chapter will give an overview of keywords, many techniques methods 

on mangroves Remote Sensing, and analysis the impact on land cover due to Sea 

level rise based on GIS methods.  

2.1  Keywords 

Before going deeply into the research topic “Mangrove forests changes and 

responses to Sea level rise based on Remote Sensing and GIS in PKWS, Cambodia”. 

This study will highlight some keywords such below: 

 Mangrove forests are an ecosystem that grows between seawater and coastal 

areas (Hamilton & Snedaker, 1984). 

 Sea Level Rise (SLR) is an increase in the level of the world’s oceans due to 

the effects of global warming derived from satellite observations and tide-

gauge. The long-term average Sea level rise was called Relative Sea Level 

Rise derived from coastal tide gauges related to the local land level (Coastal 

Wiki, National Geographic). 

 Geographic Information System (GIS) is a system designed to capture, 

manage, manipulate, analyze, store, and representing spatial or geographical 

data (GISTDA). 

 Remote sensing (RS) is the processing of collecting Earth surfaces and 

phenomena information using sensors with no physical contact with the 

surface feature and phenomena (GISTDA). 

2.2 General Mangroves Remote Sensing (RS) 

Mangroves remote sensing has been studied since 1956. Over the last six 

decades, mangroves RS has evolved with hot spot topics such mangrove distribution 

mapping, ecosystem process characterization, biophysical parameters inversion, and 

monitoring the extent of changing of mangroves (Wang et al., 2019). Monitoring and 
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studying mangrove forest areas change over time are required cost-effective, 

convenient, accurate, and mapping techniques (Green, Clark, Mumby, Edwards, & 

Ellis, 1998). The providing of the historical evolution of mangroves remote sensing, 

the research topics, remote sensing techniques, and sensors from 1956 until 2018 

(figure 1).  

 

Figure  1. The evolution of mangroves remote sensing from 1956 until 2018. 

Distribution mapping (yellow box), biophysical parameters inversion (pink box), and 

ecosystem process characterization (green box), (Wang et al., 2019). 
 

2.3 Analysis Impact of Sea Level Rise using GIS Methods 

Geographic Information System (GIS) and Remote Sensing (RS) have been 

using as a powerful technique to study the relationship between Sea level rise and 

land use or coastal areas based on geospatial data and various data. Moreover, GIS is 

really important for simulating related to different Sea level rise scenarios. For 

analysis these scenarios are vital to measuring the vulnerability and risk from Sea 

level rise, to prevent the land cover and land use from Sea level rise risk. In recently, 

there are research studies about the effectiveness of land cover and coastal areas 
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associated due to Sea level rise. Particularly, these studies are crucial for developing 

and making the policy associated to the efficiency of Seal level rise and climate 

change. Alternatively, there are many research studies were conducted the analysis of 

Sea level rise impact on land cover at global scale, regional and local levels (Table 1).  

Table  1. The studies of analysis SLR impacts using Remote Sensing and GIS 

Previous Studies References 

To assess and visualize the global impacts of potential 

inundation by developed GIS methods based on global sea-

level increase of 1 to 6 m 

(X. Li et al., 

2009) 

To examined vulnerability implications of coastal inundation 

due to SLR for the coastal zone in Semarang city, Indonesia. 

(Marfai & King, 

2007) 

Vulnerability assessment and adaptation to the impacts of sea 

level rise on the Kingdom of Bahrain 

(Al-Jeneid S, 

2008) 

To developed a city based assessment of SLR for the Turkish 

Coastal Zone. 

(Kuleli, 2010) 

Analysis the potential impacts of SLR along Kanyakumari 

District’s coastal zone in Tamilnadu, India. 

(Natesan & 

Parthasarathy, 

2010) 

The assessment of the impact of SLR on mangrove dynamics 

using RS and GIS in Ganges Delta, India  

(Pramanik, 2014) 

Vulnerability assessment of the coastal mangrove ecosystems to 

SLR in Guangxi, China 

(S. Li, Meng, Ge, 

& Zhang, 2014) 

To assess the Bhitarkanika forest and adjacent eco-fragile area, 

Odisha, using Remote Sensing and GIS based SLR inundation 

(M. Kumar, 

2015) 

Geospatial modeling of the impact of SLR on coastal 

communities: application of Richmond, British Columbia, 

Canada. 

(Malik & 

Abdalla, 2016) 

The assessment of SLR impacts on mangrove dynamics in the 

Indian Part of Sundarbans using Geospatial Techniques. 

(Pramanik, 2016) 

Geospatial modelling of the inundation levels in the 

Sundarbans mangrove forests due the impact of SLR and 

identify the effected species and regions. 

(Ghosh, Kumar, 

& Kibet Langat, 

2019) 

 

Most studies used Remote Sensing data such Digital Elevation Model (DEM) to 

derive inundated areas, and DEM data has developed as the main approach. Even 

though, elevation data is a significant parameter to recognize the vulnerable coastal 

area and to define affecting area by Sea level rise along the coastal area and mangrove 

ecosystems. 
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2.4 Mangrove Forests and Sea Level Rise in Cambodia 

2.4.1 Mangrove Forests Situation 

 

Cambodia’s mangrove forests are along the coastline with 435 km that consist 

of Koh Kong province, Sihanoukville, Kampot, and Kep province (Nop, 2017).  

Table  2. The different estimates area of mangrove forests in Cambodia 

Year  Area (ha) Reference  

1964 96,300 Report No.2 of Ministry of Water, Forests and Hunting 

in Ung (1991) 

1973 94,600 UNDP, World Bank, FAO (1996) 

1973 94,000 Ministry of Education (2009) 

1975 94,600 MRC, UNDP, FAO 

1980 91,200 The Food and Agriculture Organization (2005) 

1989 88,413 (Veettil, 2019) 

1990 82,400 The Food and Agriculture Organization (2005) 

1992–93  37,000 Department of Fisheries 

1992–93  85,100 MRC, UNDP, FAO  

1993 77,669 DOFW, IRD  

1993 62,416 Ministry of Education (2010) 

1994 78,445 (Veettil, 2019) 

1997 72,835 DOFW, IRD  

1997 77,260 MRC, UNDP, FAO 

1997 63,039 Ashwell (1997) 

1997 57,482 Ministry of Education (2010) 

2000 73,600 Ministry of Education (2005) 

2002 56,241 Ministry of Education (2002) 

2005 69,200 Ministry of Education (2005) 

2006 33,087 MLMUPC, Cambodia 

2009 58,934 (Veettil, 2019) 

2010 78,405 Fishery Administration (FiA) 

2015 43,000 Rizvi and Singer (2011) 

2016-2017 51,603 (Veettil, 2019) 
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Mangrove forests in Cambodia are considered essential forests that provide 

food sources, shelters, and nurseries along the coastal zone. Mangrove forest 

ecosystems are crucial to the local communities in Cambodia. The coastal population 

of 70% is relying on mangrove resources and products. By the ways, mangrove 

forests have decreased by anthropogenic activities such as conversion mangrove 

forests area into shrimp farms, salt farms, charcoal production. These anthropogenic 

activities were affected the marine habitats and resistance to protect against the storms 

(Rizvi, 2011). 

2.4.2 Mangroves Issue 

While mangrove forests provide many benefits for the environment and social-

economic, these mangrove forests are changed and destroyed from anthropogenic 

activities. The human activities such as illegal exports, shrimp farming, and charcoal 

production are examined as the foundation factors that led to the mangrove forests 

reduction and threatened mangrove areas in the coastal of Cambodia including Koh 

Kong and Kampot province (Bann, 1997; MoE, 2009). In recently, the results of 

analysis satellite imagery between 1989 and 2017 showed that mangrove forests have 

cleared along Cambodia’s coastline was about 36.810 ha (42%). During 1989 and 

2017, mangrove forests in coastal provinces of Koh Kong, Sihanoukville, Kampot, 

and Kep province, were lost about 26,437 ha, 1986 ha, 8127 ha, and 260 ha. 

 

Figure  2. Before and after mangrove areas deforestation in Koh Kong province 

during from 1989 to 2017 (Bk & Quang, 2019). 
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Furthermore, the coastal zone has been identified as a central point to adapt to 

the existing and future impacts of climate change by The Royal Government of 

Cambodia. In that, Koh Kong province is the coastal area threatened to the impacts of 

seawater intrusion and Sea level rise, storms and storm surges, heavy rain and 

flooding, and drought and water stress. The possible threats of mangrove forests 

losing are from these factors such rising sea level, storm surges, tropical cyclones, 

coastal erosion, and saltwater intrusion into agricultural lands. Sea level rise will have 

a significant impact on mangrove ecosystems and also set as an indicator for 

assessment the coastal mangroves vulnerable that caused by climate change in 

Cambodia.  

2.4.3 Relative Sea Level Rise 

Although no direct observed sea-level data were available for Cambodia, 

many sea-level observing sites are available in nearby countries. So that made 

Cambodia no long-term quality-controlled dataset was available or can be obtained. 

Even though, Sea level rise data are examined from several nearby observing sites.  

The locations of the stations selected for this study shown in Figure 3 (obtained from 

http://www.psmsl.org/data/obtaining/). 

 

Figure  3. Map of stations with sea-level data near Cambodia (BCC-PPCR, 2014). 
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There are variations in the annual cycle in sea-level at various locations due to 

the monsoonal influence. An increase in sea-level between 5 and 15 cm already been 

observed at several stations over the last several decades. The analysis includes data 

from these sites as well as from simulations of the twenty century and twenty-one 

century SLR predictions depended on the Atmosphere-Ocean General Circulation 

Models (AOGCMs) by the World Climate Research Programme from the Coupled 

Model Intercomparison Project Phase 5 (CMIP5) (Radić & Hock, 2011). 

To determine changes in sea levels at a regional scale in Cambodia, the 

methods of Slangen et al. (2012) and Church et al. (2011) were used (Church & 

White, 2011); (Slangen, Katsman, van de Wal, Vermeersen, & Riva, 2011). These 

involved the combination of the dynamic ocean sea-level distribution through local 

change. 

In Cambodia, results from other studies were used to derive conclusions for 

this region. The frequency of sea-levels extremely increases for example a result of 

the higher sea-levels in the 21st century. A one in 100-year flooding event could be 

occurring annually at many locations if Sea level rise 0.5 m by 2100, (Hunter, 2011). 

The observed mean sea level rise in Cambodia, a 10 cm rise already observed in the 

last 40 years, and estimated that Sea level rise from 40 to 60 cm will occur in Koh 

Kong province by the end of the century. 

2.5 Classification Methods 

There are two methods of Remote Sensing classification are object-based and 

pixel-based image classification (Aggarwal, Srivastava, & Dutta, 2016). The object-

based classification method is an alternative when classify based on pixel values is 

not able to define spatial objects properly. The pixel-based classification method is 

Remote Sensing image classification method has been carried out according to the 

statistics difference ground spectrum information characteristics. 

These methods are curious for identify and locate the land cover types such as 

forest and water bodies, agriculture, bare land, the built-up area known as a 

combination of experience and fieldwork. The analysis attempt to locate the specific 
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sites in Remote sensing and denote homogenous of these, land cover types well-

known as training sites.  

2.5.1 Object-based Classification 

The object-based classification method could be an alternative method that has 

been used and suitable for medium spatial resolution to high spatial resolution of 

satellite imagery (Blaschke, 2010). The object-based classification is tries to build the 

meaningful objects through the image segmentation, and similar characteristics based 

on spatial and spectral properties. For objects segmentation were become to be the 

unit of analysis from spectral statistics such as standard deviation, spatial information 

such as image texture or spectral band means, that can be used for further analysis 

include satellite image classification.  

2.5.2 Pixel-based Classification 

The pixel-based classification method is the classification method that use 

only the spectral information available for individual pixels done on a per-pixel level 

(Sibaruddin, Shafri, Pradhan, & Haron, 2018). Hence, each pixel represents a training 

example for a classification algorithm, and this training example would be in the form 

of an n-dimensional vector, where n was the number of spectral bands in the image 

data. The train algorithm of classification would give output as a class prediction for 

each individual pixel in an image. 

 

2.5.3 Easy Random Forest in Dzetsaka Plugin 

Random Forest classification has become widely held used for real world in 

land cover mapping of Remote sensing field includes Mangrove forests mapping. 

Random Forest is assembling machine learning classification as well as Regression 

that handle in big data efficiently. 

Random Forest algorithm is a good algorithm to solve the overfitting that it is 

one critical problem that can make the results worse. By the ways, the Random Forest 

algorithm is a classifier of Random Forest classify that provided a high classification 

accuracy, has the proficiency to determine the crucial variables and predict the 
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missing values during performing image classification, and modeled for categorical 

values. Random Forest is a combination of a number of non-parametric classification 

and Decision Tree/Classification and Regression Trees (CART). A Decision Tree is 

similar to a hierarchy composed of the root node, including all samples, node 

separator which has decision rules, and the end of the leaf node represents desire 

classes. Decision Trees are often handy tools to explain the intuition behind a 

prediction to people unfamiliar with Machine Learning. Decision tree is a simple, 

deterministic data structure for modelling decision rules for a specific classification 

problem 

 

Figure  4. Ensemble of Decision Trees (Random Forest). 
 

Initially based on Gaussian Mixture Model Classifier developed by Mathieu 

Fauvel. In present, Dzetsaka Plugin also supports the Random Forest (RF) classify, K-

Nearest Neighbors (K-NN), and Support Vector Machine (SVM), this plugin is a 

more genera list tool than the Historical Map which was dedicated to classify the 

forests from old maps developed by Nicolas Karasiak, Random Forest often has better 

results, but it takes longer to perform the fit and the predicted process. To perform the 

Random Forest classifier in Dzetsaka Plugin, it needs to install of Scikit-learn python 

library because it supports working on Windows. Scikit-learn is probably the most 

useful library for machine learning in Python. To explore and understand about the 
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Scikit-learn library for machine learning python of this plugin including train 

algorithm, classification, and confusion matrix for accuracy calculation, just go 

directly to this website https://github.com/nkarasiak/dzetsaka. For understand more 

about progressing of Scikit-learn for Random Forest classifier: 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForest 

Classifier.html#sklearn.ensemble.RandomForestClassifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 15 

CHAPTER 3 METHODOLOGY 

This chapter describes the methods were used to acquire data and process data. 

The main concept of this part is how to extract the mangrove forests and changing in 

mangrove forests areas from 2015 to 2020, and impacts of future Sea level rise on 

mangrove forests areas derived from Remote sensing (RS) imageries and Geographic 

Information System (GIS) tools. The methodology chapter includes data acquisition 

and data preprocessing, data processing. In this section, for performing classification 

to extract mangrove forests from 2015 to 2020 using Sentinel-2 imageries multi-

temporal data based on the Random Forest algorithm of Random Forest (RF) 

Classification.  Analysis of mangrove forests change during from 2015 to 2020 by 

land cover classes were conducted using Modules for Land Use Change Simulations 

(MOLUSCE) which is a plugin that allows performing convenient analysis of land-

use changes evaluation. SRTM DEM with three different Sea level rise scenarios 

(SLR 40 cm, SLR 60 cm, and SLR 1 m) to create a geospatial model to identify the 

potential impacts of mangrove forests areas due to Sea level rise by overlap with 

mangrove forests map in 2020. 

3.1 Study Area 

Peam Krasop Wildlife Sanctuary (PKWS) is a large area located in 11⁰50’75” 

N & 103⁰06’77” E that located in Koh Kong Province in the Southwestern of 

Cambodia. Peam Krasop Wildlife Sanctuary (PKWS) is a coastal wildlife sanctuary 

established in 1993, and it is a protected area covering 25,897 ha. The part of PKWS 

lies inside the boundary of Koh Kapik and Islets Ramsar Site associated. Peam 

Krasop Wildlife Sanctuary (PKWS) is a unique supporting significant mangroves 

ecosystem that provides crucial benefits for fishery and other resources. This area 

provides various works for livelihoods who are living with its borders including 

charcoal production, aquaculture, and other reasons.   

Particularly, Peam Krasop Wildlife Sanctuary (PKWS) is an area that worries 

about clearing of coastal swamp forest and the declining of mangrove forests to 

shrimp farming, that pushed a negative effect on wildlife habitat in this area. Thus, 

Peam Krasop Wildlife Sanctuary (PKWS) is a strong area affected by inter-tidal 
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levels and seasonally fluctuating freshwater inputs (Dara, 2009). The adjacent 

estuarine sea in Peam Krasop Wildlife Sanctuary (PKWS) is extremely vulnerable to 

rising sea levels that caused by climate change, it will cause increased salinity 

incursion and increases in sedimentation. 

 

Figure  5. Map of Study area (Peam Krosop Wildlife Sanctuary). 
 

3.2 Methodology Workflow  

The methodology is divided into three parts, which can be broadly categorized 

as data acquisitions, image processing and image analysis. This chapter describes the 

workflows of the three methods (Figure 5) for (1) extracting the mangrove forests 

from 2015 to 2020, (2) analyze changing in mangrove forests areas during from 2015 

to 2020, and (3) impacts of future Sea level rise on mangrove areas derived from 

Remote Sensing (RS) imageries and Geographic Information System (GIS) model.  
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Figure  6.  Potential inundation of SLR scenarios on mangroves forest areas by the 

end of this century workflow. 
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3.3 Data Acquisitions  

3.3.1 Sentinel-2 Imagery 

In this study, Sentinel-2 imageries have been selected to identify and study 

changes in mangrove forests and mangrove extraction. Sentinel-2 satellite image is an 

Earth observation mission from the European Space Agency (ESA) contains of a 

group of two satellites orbiting the poles, which are in orbit around the same sun, 

which are at 180 ° each other. There are two twin satellites, one is the Sentinel-2A 

sensor was launched in June 2015, and the Sentinel-2B sensor was launched in March 

2017. This type of satellite has a full swath width at 290 km and a high return time for 

ten days at the equator of one Satellite. It supports the monitoring mission of Earth’s 

surface changes and coverage limit from latitudes between 56 ° South and 84 ° North. 

This optical imagery includes 13 bands with high spatial resolution including 10 m, 

20 m, and 60 m, over coastal waters and land. Sentinel-2A, only high spatial 

resolution 10m and 20 m were selected in this study. 

Table  3. Description of spectral bands of Sentinel-2 (Hawryło & Wezyk, 2018) 

Bands 

Spectral 

Wavelength 

Range (nm) 

Spatial 

Resolution (m) 

Description 

Band 1 32-453 60 m Coastal aerosol 

Band 2 458-523 10 m Blue 

Band 3 543-578 10 m Green 

Band 4 650-680 10 m Red 

Band 5 698-713 20 m Red-edge 1 

Band 6 733-748 20 m Red-edge 2 

Band 7 773-793 20 m Red-edge 

Band 8 785-900 10 m Near Infrared (NIR) 

Band 8A 855-875 20 m Near Infrared narrow(NIRN) 

Band 9 935-955 60 m Water vapor 

Band 10 1360-1390 60 m Cirrus 

Band 11 1565-1655 20 m Shortwave Infrared (SWIR) 1 

Band 12 2100-2280 20 m Shortwave Infrared (SWIR) 2 
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Sentinel-2A, only high spatial resolution 10m and 20 m were selected in this 

study. Sentinel-2 imageries have been selected from 2015 to 2020. Sentinel-2 

imageries were collected from the United State Geological Survey (USGS) and ESA 

Sentinels Scientific Data Hub. 

 

Table  4. Data Acquisition for Sentinel-2 imagery 

Sensor Spatial Resolution 

(m) 

Date Path/row Cloud 

Cover 

Sentinel-2 L1C 10m, 20 m 2015-12-31 48/18 0.00 

Sentinel-2 L1C 10m, 20 m 2016-02-31 48/18 38.84 

Sentinel-2 L1C 10m, 20 m 2017-12-20 48/18 0.00 

Sentinel-2 L1C 10m, 20 m 2018-11-25 48/18 1.93 

Sentinel-2 L1C 10m, 20 m 2019-12-10 48/18 0.00 

Sentinel-2 L1C 10m, 20 m 2020-12-29 48/18 32.80 

 

Sentinel-2 L1C is Top Of Atmosphere (TOA) Orto-image products that need 

to applied atmospheric correction Orto-image products for more accurate and reliable 

data. To apply the atmospheric correction on Sentinel-2A L1C imageries, using the 

Semi-Automatic Classification Plugin (SCP), which this plugin provides tools for 

downloading, and preprocessing of Remote Sensing images. 

3.3.2 Digital Elevation Model (DEM) 

Digital Elevation Model (DEM) is a specialized database that represents the 

relief of a surface between points known as elevation. This elevation data can be 

derived from several sources such as photogrammetric data capture, ground surveys, 

and a rectangular DEM grid created. DEM provides multi-benefits, it serves to 

illustrate the appearance of the earth's surface (Octariady, Hikmat, Widyaningrum, 

Mayasari, & Fajari, 2017), GIS software can use DEM for some activities such as 

orthorectification image, creation of contour lines, erosion control, 3D surface 

visualization, flood simulation, and performing view-shed visibility analysis. DEM is 

really important as the main parameter to determine the impact of SLR on future 

mangrove forests area in PKWS. Therefore, in this section, SRTM DEM was 



 20 

collected from United State Geological Survey (USGS) was used to remove regions 

of elevation of the ocean (elevation of zero), besides it was originally collected from 

the National Geospatial-Intelligence Agency (NGA) and National Aeronautics and 

Space Administration (NASA) by 11 February 2000. SRTM data were derived from 

C-band radar datasets which was distributed under the agreement of USGS, NGA, and 

NASA's Jet Propulsion Laboratory.  SRTM product was utilized a C-band radar 

image to generate the elevation data over 80% of the land surface in the earth.  

In this study, NASA SRTM DEM is including two images, which 

N11E102.SRTMGL1 with Center Latitude and Longitude 11°30'00"N, 102°30'00"E, 

and N11E103.SRTMGL1 with Center Latitude and Longitude 11°30'00"N, 

103°30'00"E. NASA SRTM images were acquisition start date 2000-02-11 and 

acquisition end date 2000-02-21 with spatial resolution 30 meters (1 Arc-Second 

Global) covering most of the world with absolute vertical accuracy of less than 16m 

(RMSE of 9.73m). This SRTM DEM has to remove the sinks from the negative raster 

values into 0 values of mean sea level (MSL) defined the ‘fill tool” in ArcMap 

software, this removing is for keeping the reliability in the generated results. 

3.3.3 Sea Level Rise (SLR) Scenarios 

Changing of sea-level has been measuring through the tide-gauge and satellite 

altimeter that related to changing of sea-level in global, regional, and local factors. 

Generally, tide-gauge is the tool that using for measurement and observation of the 

sea-level change rates. Mostly, tide-gauge data is used for the regional sea-level 

change of coastal wetlands (Gilman, Ellison, & Coleman, 2007) as well as mangrove 

dynamics. Even though, the regional sea-level change depends on various factors such 

as meteorological, and oceanographic factors where the coastal wetland is situated, 

coastal subsidence, sediment budget, and the distance of available tide-gauge data 

(Gilman et al., 2007). 

In Cambodia is not available tide-gauge to observed the sea-level, hence the 

Sea level rise rates in this study area base on several sea-level observing sites are 

available in nearby countries such as Thailand, Vietnam, and Indonesia. The analysis 

includes data from these sites as well as from simulations of the 20th century and 
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21st-century Sea level rise predictions. The preliminary regional distribution of sea-

level change for 2081-2100 compared with 1986-2005 for the RCP 8.5 scenario based 

on Atmosphere-Ocean General Circulation Models (AOGCMs) from CMIP5. Based 

on this RCP 8.5 emission scenario estimated that sea-level will rise from 40 to 60 cm 

by the end of the twenty-first century in Koh Kong province. These Sea level rise 

scenarios are essential as the raster cells data for processing with SRTM DEM data to 

create a Geospatial model of inundation level of Sea level rise impact on mangrove 

forests areas. There are three different Sea level rise scenarios were adopted such as 

SLR 40 cm, SLR 60 cm depended on Sea level rise projection for Koh Kong province, 

and SLR 1 m adopted in this study. 

Table  5. Summarized data acquisition 

Data Spatial 

resolution 

Temporal 

coverage 

References 

 

Sentinel-2 MS 

L1C 

 

10m, 20m 

 

2015-2020 

United State Geological Survey 
 

ESA Sentinels Scientific Data Hub 

SRTM DEM 30 m 11-21 02 2000 United State Geological Survey (USGS) 

SLR Rates (40cm, 

60cm,1m) 

 2081-2100 IPCC’s SLR scenarios based on 

(1986-2005) 

 

3.4 Data Processing 

3.4.1 Mangrove Forests Extraction 

Mangrove forest extraction has been classified using the easy machine 

learning Random Forest classified in Dzetsaka Plugin in QGIS. This plugin allows 

performing classifiers such as Gaussian Mixture Model Classifier developed by 

Mathieu Fauvel. In present, Dzetsaka Plugin also supports the Random Forest (RF) 

classify, K-Nearest Neighbors (K-NN), and Support Vector Machine (SVM), which 

developed by Nicolas Karasiak, (Pinasu D, 2020). Random Forest classification has 

been used to classified and extracted mangrove forests. Random Forest often has 

better results, but it takes longer to perform the fit and the predicted process. To 
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perform the Random Forest classifier in Dzetsaka Plugin, it needs to install of Scikit-

learn python library because it supports working on Windows. Scikit-learn is probably 

the most useful library for machine learning in Python. To understand more about the 

library for machine learning python of this plugin including train algorithm, 

classification, and confusion matrix for accuracy calculation, just go directly to this 

website https://github.com/nkarasiak/dzetsaka. 

This tool was developed to classify a different kind of vegetation while it is 

useful for mangrove forests study and research. There are two steps for procedures 

work are training data and perform the type of classification. For training Random 

Forest algorithm per every satellite image were 240 training data according to create a 

total of six classes. In Dzetsaka, Random Forest algorithm in the optional parameters 

flag save the error matrix that it was from specify split to 50%. So that 50% of the 

samples of the roi.shp file are used for training the algorithm and the rest for cross-

validation. Random Forest algorithm works with two stages, first stage is pseudocode 

random forest creation, another stage is to make the random forest prediction 

pseudocode from the RF classifier created in the first stage. The process of the 

Random Forest algorithm is seeming easy to understand, but somehow it is really 

efficient.   

 

Table  6. Number of samples selected for training classification 

Year Water Mangroves Saltmarsh Forest 

Lands 

Settlements Other 

Lands 

2015 40 40 40 40 40 40 

2016 40 40 40 40 40 40 

2017 40 40 40 40 40 40 

2018 40 40 40 40 40 40 

2019 40 40 40 40 40 40 

2020 40 40 40 40 40 40 

 

Land cover’s mangroves class were classified into three level. The first level 

of land cover demarcated of land cover types’ six classes includes water body, 
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mangrove forests, saltmarsh, forest lands, settlements, and other lands. The second 

level is reclassified into three classes namely water body, mangroves, non-mangroves 

(combination of saltmarsh, forest land, settlements, and other lands) using Reclassify 

tool in ArcMap. The third level demarcated of mangrove forests areas extraction by 

reclassified water body class and non-mangroves class into NoData, and keep only 

mangrove forests class in by using Reclassify tool in ArcMap. 

Table  7. Mangrove forests classification levels 

Land Cover classes Level I Level II Level III 

1 Water body Water body  

 

Mangrove 

forests 

2 Mangrove forests Mangrove forests 

3 Saltmarsh  

 

Non-mangrove forests 
4 Forest lands 

5 Settlements 

6 Other lands 

 

3.4.2 Analysis Changes of Mangrove Forests 

After land cover classification at level I has completed, Mangrove forests 

result in 2015 to 2020 were generated changing in mangrove forests of 5 years’ 

mangrove forests. Mangrove forests have been analyzed change from mangrove 

forests class to other land cover classes between period times (2015, 2016, 2017, 2018, 

2019, 2020). These changes were analyzed using QGIS plugin, Modules for Land Use 

Change Simulations (MOLUSCE) which this MOLUSCE allows performing the 

convenient analysis of land-use changes evaluation and quickly. This plugin consists 

of several parts: one part is Area Analysis, which provides procedures to calculate the 

amount change between the state of land cover classes and allows creating of change 

maps of the land cover classes. The Modeling provides submodules for modeling 

relations between input-output data. 

The main purpose of area analysis module is to create and calculate change 

map. The area analysis module uses the next scheme of transition encoding. For 6 

classes (N=6), there are 6*6= 36 possible transitions: 
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Table  8. The transition encoding of classes 

Classes Water Mangroves Saltmarsh Forest 

Lands 

Settlements Other 

Lands 

Water 0 1 2 3 4 5 

Mangroves 6 7 8 9 10 11 

Saltmarsh 12 13 14 15 16 17 

Forest Lands 18 19 20 21 22 23 

Settlements 24 25 26 27 28 29 

Other Lands 30 31 32 33 34 35 
 

3.4.3 Analysis Potential Impacts of SLR on Mangrove Forests 

Mangrove forest areas in 2020 will be used as the main data for predict the 

inundation level of mangrove forests impact due to Sea level rise scenarios. The 

potential impacts of Sea level rise inundated on mangrove forest areas in Peam 

Krasop Wildlife Sanctuary (PKWS) were analyzed spatial analysis using Sea level 

rise scenarios RCP 8.5 from IPCC. Sea level rise rates were generated to overlay 

mangrove forests map in 2020. Then, the inundated mangrove forest areas were 

analyzed and identified under Sea level rise scenarios. In this part, ArcMap will be an 

important tool to analyze the impact area. The raster Calculator tool in ArcMap was 

used to create the raster values of 40 cm, 60 cm, and 1 m. 

3.5 Accuracy Assessments 

For accuracy assessment of easy Random Forest classification were assessed 

using confusion matrix from the performing of 240 training sample polygons in 

Dzetsaka plugin. Thus, confusion matrix was created and presented overall accuracy 

and kappa statistics in Random Forest algorithm training from 50% split of total 

training samples for cross-validation, it means 50% of the pixels are randomly 

selected to training and 50% for validation. For accuracy assessment of the Random 

Forest Classification were calculated in several ways, include Overall Accuracy (OA), 

Kappa statistic, User’s Accuracy (UA), and Producer’s Accuracy (PA) were 

calculated using Confusion matrix online calculator based on Marco Vanetti, 2007 

(Landis & Koch, 1977). 
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CHAPTER 4 EXPERIMENT RESULT 

 

4.1 Land Cover of Mangrove Forests Extraction from 2015 to 2020 

4.1.1 Land Cover Classes Level I 
 

PKWS's land cover has been classified into six classes in level I included 

water, mangroves, saltmarsh, forest lands, settlements, and other lands between 2015 

to 2020 derived from Sentinel-2 images based on Random Forest Classification 

(Figure 7 and Table 9).  

In 2015 was predominantly covered with forest lands 9058.33 ha (35.04%) 

followed by mangrove forests 7157.90 ha (27.69%), water body 5240.86 ha (20.27%), 

saltmarsh 2362.72 (9.13%), other lands 1287.64 ha (4.98%) and settlements 746.57 

ha (2.89%).  

For land cover in 2016, was maximum covered of forest lands 9183.64 ha 

(35.52%), mangrove forests 7495.21 ha (28.99%), and water body 5526.56 ha 

(21.38%), followed by other lands 1819.45 ha (7.04%), saltmarsh 1415.94 ha (5.48%) 

and settlements 413.22 ha (1.59%).  

For land cover in 2017, was maximum covered of forest lands 9491.25 ha 

(36.71%), mangrove forests 7337.47 (28.38%), and water body 5506.50 ha (21.30%), 

followed by other lands 1679.88 (6.50%), saltmarsh 1603.62 (6.20%) and settlements 

299.77 (1.16%).  

For land cover in 2018, was maximum covered of forest lands 9954.95 

(38.50%), mangrove forests 6436.26 (24.90%) and water body 5201.85 (20.12%), 

followed by saltmarsh 2356.06 (9.11%), other lands 1605.13 (6.21%) and settlements 

1605.13 (6.21%).  

For land cover in 2019, was maximum covered of forest lands10223.60 

(39.54%), mangrove forests 6761.66 (26.15%) and water body 4915.04 (19.01%), 

followed by another area such saltmarsh2095.10 (8.10%), other lands 1242.12 (4.81%) 

and settlements616.50 (2.39%).  
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For land cover in 2020, it also showed that forest lands, mangrove forests, and 

water body were the three maximum areas covered 9629.52 ha (37.24%), 7045.64 ha 

(27.25%), and 5425.51 ha (20.99%), followed by other lands1568.62 ha (6.07%), 

saltmarsh 1545.56 ha (5.98%), and settlements 639.17 ha (2.47%).  

The overall accuracy of the Random Forest algorithm of Random Forest 

classification was well classified. The overall accuracy estimated to achieved 99.979% 

with Kappa statistic 100% in 2015, 99.975% with Kappa statistic 100% (2016), 

99.981% with Kappa statistic 100% (2017), 99.961% with Kappa statistic 99% (2018), 

99.754% with Kappa statistic 99%, and 99.96% with Kappa statistic 99%. 

Table  9. Land cover classes Level I of PKWS from 2015 to 2020 

Land cover Level I Area (Hectare) and Percentage (%) 

Classes/Year 2015 2016 2017 2018 2019 2020 

Water body 5240.86 

(20.27) 

5526.56 

(21.38) 

5506.50 

(21.30) 

5201.85 

(20.12) 

4915.04 

(19.01) 

5425.51 

(20.99) 

Mangroves 7157.90 

(27.69) 

7495.21 

(28.99) 

7337.47 

(28.38) 

6436.26 

(24.90) 

6761.66 

(26.15) 

7045.64 

(27.25) 

Saltmarsh 2362.72 

(9.13) 

1415.94 

(5.48) 

1603.62 

(6.20) 

2356.06 

(9.11) 

2095.10 

(8.10) 

1545.56 

(5.98) 

Forest lands 9058.33 

(35.04) 

9183.64 

(35.52) 

9491.25 

(36.71) 

9954.95 

(38.50) 

10223.60 

(39.54) 

9629.52 

(37.24) 

Settlements 746.57 

(2.89) 

413.22 

(1.6) 

235.30 

(0.91) 

299.77 

(1.16) 

616.50 

(2.39) 

639.17 

(2.47) 

Other lands 1287.64 

(4.98) 

1819.45 

(7.04) 

1679.88 

(6.50) 

1605.13 

(6.21) 

1242.12 

(4.81) 

1568.62 

(6.07) 

Total Area 25854.02 25854.02 25854.02 25854.02 25854.02 25854.02 

OA (%) 99.979 99.975 99.981 99.961 99.754 99.96 

Kappa 100 100 100 99 99 99 
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Figure  7. Land Cover Map level I of PWKS from 2015 to 2020. (a) Classify 2015, (b) 

Classify 2016, (c) Classify 2017, (d) Classify 2018, (e) Classify 2019, (f) Classify 

2020. 
 

4.1.2 Land Cover Classes Level II 

Land cover on PKWS area have reclassified into three classes in level II such 

water, mangroves, non-mangroves (included saltmarsh, forest lands, settlements, and 

other lands) between 2015 to 2020 (Figure 8 and Table 10).  
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Figure  8. Land Cover Map Level II of PWKS from 2015 to 2020. (a) Classify 2015, 

(b) Classify 2016, (c) Classify 2017, (d) Classify 2018, (e) Classify 2019, (f) Classify 

2020. 

In 2015, was mainly covered with non-mangroves, mangrove forests, and 

water body, were about 13455.26 ha, 7157.90 ha, 5240.86 ha, which represented 

about 52.04%, 27.69%, 20.27%. In 2016, was mainly covered with non-mangroves, 

mangrove forests, and water body, were about 12832.25 ha, 7495.21 ha, 5526.56 ha, 

which represented about 49.63%,28.99%, 21.38%. In 2017, was mainly covered with 

non-mangroves, mangrove forests, and water body, were about 13010.05 ha, 7337.47 

ha, 5506.50 ha, which represented about 50.32%, 28.38%, 21.30%. In 2018, was 

mainly covered with non-mangroves, mangrove forests, and water body, were about 

14215.91 ha 6436.26 ha, 5201.85 ha, which represented about 54.98%, 24.90%, 

20.12%. In 2019, was mainly covered with non-mangroves, mangrove forests, and 
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water body, were 14177.32 ha, 6761.66 ha, 4915.04 ha, which represented about 

54.84%, 26.15%, 19.01%. In 2020, mostly covered by non-mangroves around 

13382.87 ha, presenting 51.76%, followed by mangrove forests 7045.64 ha, 

presenting 27.25%, and water body 5425.51 ha, presenting 20.99%. 

Table  10. Land cover classes Level II of PKWS from 2015 to 2020 

 

4.1.3 Land Cover Level III 

The result of mangrove forests maps in PKWS are shown in green polygon 

(Figure 9, Table 11). Mangrove forests area in PKWS were 7157.90 ha in 2015, 

7495.21 ha (2016), 7337.47 ha (2017), 6436.26 ha (2018), 6761.66 ha (2019), and 

covered 7045.64 ha in 2020. 

The confusion matrix of the Random Forest algorithm indicated the mangrove 

forests class with producer’s accuracy around 99.962% in 2015, 99.996 in 2016, and 

100% for 2017, 2018, 2019, and 2020. The user’s accuracy, mangrove forests were 

estimated accuracy of 100% every year of the time period. 

 

Land cover 

Level-II 
Area (Hectare) and Percentage (%) 

Classes/Year 2015 2016 2017 2018 2019 2020 

Water body 5240.86 

(20.27) 

5526.56 

(21.38) 

5506.50 

(21.30) 

5201.85 

(20.12) 

4915.04 

(19.01) 

5425.51 

(20.99) 

Mangroves 7157.90 

(27.69) 

7495.21 

(28.99) 

7337.47 

(28.38) 

6436.26 

(24.90) 

6761.66 

(26.15) 

7045.64 

(27.25) 

Non-

mangroves 

13455.26 

(52.04) 

12832.25 

(49.63) 

13010.05 

(50.32) 

14215.91 

(54.98) 

14177.32 

(54.84) 

13382.87 

(51.76) 

Total Area 

(Ha) 

25854.02 25854.02 25854.02 25854.02 25854.02 25854.02 
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Table  11. Land cover classes Level II of PKWS from 2015 to 2020 

 

 

Figure  9. PWKS’s mangrove forests from 2015 to 2020. (a) Classify 2015, (b) 

Classify 2016, (c) Classify 2017, (d) Classify 2018, (e) Classify 2019, (f) Classify 

2020. 

Land cover Level-

III 

Area (Hectare) 

Class/Year 2015 2016 2017 2018 2019 2020 

Mangrove forests 7157.90 7495.21 7337.47 6436.26 6761.66 7045.64 

Produce’s accuracy 

(%) 

99.962 99.966 100 100 100 100 

User’s accuracy (%) 100 100 100 100 100 100 
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4.2 Mangrove Forests Change from 2015 to 2020 Using MOLUSCE 

4.2.1 Mangrove Forests Change from 2015-2016 
 

Mangrove forests have changed from 7150.90 ha in 2015 to 7495.21 ha in 

2016. Between 2015 and 2016, mangroves forest were significantly increased by 

337.31 ha (Table 12). The result shows mangrove forests were increased from 

converting saltmarsh by about 445.78 ha. However, mangrove forests were changed 

to other land cover classes include water, saltmarsh, settlements, and other lands, 

about -1.86, -6.38, -4.77, and -95.46 ha in 2016 (Table 12, Figure 10). 

 
Figure  10. PKWS’s Mangrove forests change between 2015 and 2016. 
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Table  12. Mangrove forests change (hectare) between 2015 to 2016 

Classes/Year 2015 2016 Total (Hectares) 

Mangrove to Water 3.24 1.38 -1.86 

Mangrove forests 6762.06 6762.06 6762.06 

Mangrove to Saltmarsh 56.28 502.06 445.78 

Mangrove to Forest lands 205.55 199.17 -6.38 

Mangrove to Settlements 5.74 0.97 -4.77 

Mangrove to Other Lands 125.03 29.57 -95.46 

Total (Hectare) 7157.90 7495.21 337.31 

 

4.2.2 Mangrove Forests Change from 2016-2017 

Mangrove forests in PKWS have changed from 7495.21 ha in 2016 to 7337.47 

ha in 2017. In these years, mangrove forests were extremely decreased by 157.74 ha 

(Table 13, Figure 11). Mangrove forests were significantly decreased to forest lands 

about 246.67 ha, while converted from water, saltmarsh, settlements, and other lands, 

about 6.42, 3.26, 10.50, and 68.75 ha, to mangrove forests area in 2017.  

Table  13. Mangrove forests change (hectare) between 2016 to 2017 

Classes/Year 2016 2017 Total (Hectare) 

Mangrove to Water 4.39 10.81 6.42 

Mangrove forests 6951.32 6951.32 6951.32 

Mangrove to Saltmarsh 184.98 188.24 3.26 

Mangrove to Forest lands 345.34 98.67 -246.67 

Mangrove to Settlements 0.77 11.27 10.50 

Mangrove to Other Lands 8.41 77.16 68.75 

Total (Hectare) 7495.21 7337.47 -157.74 
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Figure  11. PKWS’s Mangrove forests change between 2016 and 2017. 

4.2.3 Mangrove Forests Change from 2017-2018 

Similarly, mangrove forests have continued to decrease in 2018. In 2018, a 

decrease of mangrove forests about 901.21 ha was decline to forest lands, saltmarsh, 

other lands and settlements, represented about -442.91, -383.78, -76.13, and -5.35. 

This was extremely decreased from 7337.47 ha in 2017 to 6436.26 ha in 2018 (Table 

14, Figure 12). 
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Table  14. Mangrove forests change (hectare) between 2017 to 2018 

Classes/Year 2017 2018 Total (Hectare) 

Mangrove to Water 0.54 7.50 6.96 

Mangrove forests 6211.57 6211.57 6211.57 

Mangrove to Saltmarsh 523.90 140.12 -383.78 

Mangrove to Forest lands 519.65 76.74 -442.91 

Mangrove to Settlements 5.36 0.01 -5.35 

Mangrove to Other Lands 76.45 0.32 -76.13 

Total (Hectare) 7337.47 6436.26 -901.21 

 

 
Figure  12. PKWS’s Mangrove forests change between 2017 and 2018. 
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4.2.4 Mangrove Forests Change from 2018-2019 

Furthermore, mangrove forests have started to increase in PKWS in 2019. An 

increase of  325.40 ha were mangrove forests changed from 6436.26 ha in 2018 to 

6761.66 ha in 2019. These significant changes from different classes such as 

saltmarsh, forest lands, other lands and settlements, represented about 270.46, 35.17, 

19.90, and 0.46 ha (Table 15, Figure 13).  

 

Figure  13. PKWS’s Mangrove forests change between 2018 and 2019. 
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Table  15. Mangrove forests change (hectare) between 2018 to 2019 

Classes/Year 2018 2019 Total (Hectare) 

Mangrove to Water 0.82 0.23 -0.59 

Mangrove forests 5825.80 5825.80 5825.80 

Mangrove to Saltmarsh 128.70 399.16 270.46 

Mangrove to Forest lands 457.16 492.33 35.17 

Mangrove to Settlements 1.17 1.63 0.46 

Mangrove to Other Lands 22.61 42.51 19.90 

Total (Hectare) 6436.26 6761.66 325.40 

 

4.2.5 Mangrove Forests Change from 2019-2020 

Besides, between 2019 and 2020, mangrove forests have increased by 

approximately 283.98 ha. In detail, mangrove forests have changed from 6761.66 ha 

to 7045.64 ha between 2019-2020. An increase of these mangrove forests were 

converted from forest lands about 348.81 ha (Table 16, Figure 14). 

Table  16. Mangrove forests change (hectare) between 2019 to 2020 

Classes/Year 2019 2020 Total (Hectare) 

Mangrove to Water 8.59 0.75 -7.84 

Mangrove forests 6272.19 6272.19 6272.19 

Mangrove to Saltmarsh 165.37 161.17 -4.20 

Mangrove to Forest lands 248.17 596.98 348.81 

Mangrove to Settlements 14.41 0.03 -14.38 

Mangrove to Other Lands 52.93 14.52 -38.41 

Total (Hectare) 6761.66 7045.64 283.98 
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Figure  14. PKWS’s Mangrove forests change between 2019 and 2020. 

 

4.2.6 Mangrove Forests Change from 2015-2020 

The long-term changing in mangrove forest areas during 2015 to 2020, 

mangrove forests were changed from 7157.90 ha to 7045.64 ha. Additionally, 

unchanged mangrove forests estimated about 6281.89 ha. During 5 years (2015-2020), 

mangrove forests decreased 561.59 ha, however the mangrove forests areas has 

regrowth about 451.91 ha. Totally, mangrove forests areas estimated to loss about 

112.26 ha occurred in PKWS from 2015 to 2020 due to mangrove forests were 

transferred to other land cover classes. Mangrove forests are estimated converting to 

forest lands, other lands, settlements, and water, which were about -387.53, 115.78, 

59.57, and -1.29 ha (Table 17, Figure 15 and 16). 
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Table  17. Mangrove forests change (hectare) between 2015 to 2020 

Classes/Year 2015 2020 Total (Hectare) 

Mangrove to Water 15.62 14.33 -1.29 

Mangrove forests 6281.89 6281.89 6281.89 

Mangrove to Saltmarsh 167.05 618.96 451.91 

Mangrove to Forest lands 505.22 117.69 -387.53 

Mangrove to Settlements 60.27 0.7 -59.57 

Mangrove to Other Lands 127.85 12.07 -115.78 

Total (Hectare) 7157.9 7045.64 -112.26 

 

 

Figure  15. PKWS’s Mangrove forests change between 2015 and 2020. 
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Figure  16. Diagram of mangrove forests change during from 2015 to 2020. 
 

 

Figure  17. Increased and Decreased of Mangrove forests area from 2015-2020. 
 

4.3 Potential Inundation of SLR on Mangrove Forests Area 

In this part, mangrove forests extraction in 2020 was used to analyze the 

vulnerable mangrove forests areas in Peam Krasop Wildlife Sanctuary response to the 

impact of Sea level rise based on Sea level rise scenarios year 1986-2005. The results 

specify that the potential inundated mangrove area will submerge by Sea level rise 

2015 2016 2017 2018 2019 2020

Mangrove areas 7157.9 7495.21 7337.47 6436.26 6761.66 7045.64
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with the different Sea level rise scenarios. Mangrove forest areas are projected to be 

inundated by 40.44 ha by increasing SLR 40 and 60 cm by the end of the year 2100. 

Moreover, mangrove forest area is predicted to be inundated by 53.14 ha besides 

increasing 1 m for high Sea level rise scenarios respectively. 

 

Table  18. The inundation of different SLR scenarios vulnerable to mangrove forests 

areas 

Mangrove forest areas Sea Level Rise Scenarios 

40 cm 60 cm 1m 

Vulnerable area (hectare) 40.44 40.44 53.14 

 

 

Figure  18. Total mangrove forests area loss under three different SLR scenarios in 

Peam Krasop Wildlife Sanctuary by the end of the twenty-first century. 
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Figure  19. Analysis of the inundation of mangrove areas in Peam Krasop Wildlife 

Sanctuary due to three different SLR scenarios 
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CHAPTER 5 DISCUSSION, FUTURE WORK, AND 

CONCLUSION 

5.1 Discussion 

In this study, the numerous mangrove forests maps of Peam Krasop Wildlife 

Sanctuary in Cambodia from 2015 to 2020 were produced. To the best of our 

knowledge, this is the first interesting topic conducted in Cambodia about vulnerable 

mangrove forests area due to the potential impact of Sea level rise in Cambodia based 

on Remote Sensing (RS) and GIS techniques. For conducted these mangroves maps 

from 2015 to 2020 defined from classification employed time-series data of multi-

temporal Sentinel-2 L1C optical imageries with easy machine learning Random 

Forest based on Sci-kit learn python library that can be achieved an overall accuracy 

reach to 99.97% for 2015, 99.97 for 2016, 99.98 for 2017, 99.96 for 2018, 99.754 for 

2019, 99.96 for 2020. The accuracy checking was based on the Random Forest 

algorithm training with 240 samples per satellite imageries. For land cover changes 

were used MOLUSCE in SCP plugin in QGIS. 

According to (Potic & Potic, 2017) the result of accuracy assessment results 

demonstrate how Machine Learning algorithms execute the classification in Dzetsaka 

including Gaussian Mixture Model (GMM), K-Neighbors Classifier, and Random 

Forest. The best result is given by the Random Forest algorithm with perfect accuracy 

of 100% for 2016 and 96.35% for 2017 that the creation of land cover map from BOA 

processed of Sentinel 2 data required a ground training samples. To obtain such areas 

and create necessary vector file as training material, historical google maps were 

employed using different sources and the accuracy assessment was performed using 

training sample polygons in Dzetsaka machine learning plugin and the land cover 

change was performed using SCP plugin in QGIS. Seven different classes recognized 

for both 2016 and 2017 and consist of 175 and 164 polygons respectively. The 

Confusion matrix was created and presents overall accuracy and kappa hat. 

In this research developed Geospatial model base on Digital elevation model 

and Sea Level Rise scenarios 40-60 cm in Koh Kong province and will add one more 

Sea Level Rise scenarios 1 m to visualize the potential inundation of Sea level rise on
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mangrove forests in Peam Krasop Wildlife Sanctuary in Cambodia. For creating this 

Geospatial model used the available Digital Elevation Model that derived from 

USGS. This elevation was SRTM DEM with spatial resolution 30 meters (1 Arc-

Second Global) covering most of the world with absolute vertical accuracy of less 

than 16m (RMSE of 9.73m).  

Based on a research (Pramanik, 2016), assess the impacts of Sea Level Rise on 

mangrove dynamics in the Indian part of Sundarbansu based on Geospatial techniques 

using ASTER DEM data (2014) that collected from the USGS website. For collecting 

data about sea level of nearest tidal gauge station Haldia (2.59 ± 1.0 mm/year) and 

Diamond Harbor (4.67 ± 0.68 mm/year). Moreover, the study indicates that the low-

level mangrove islands would threaten with the rates of increasing sea level under 

present climate change. However, the amount of net loss is about 10009 ha at the rate 

of 164.08 ha per year of the four more vulnerable islands. According to another 

research, to assess the potential impacts of sea level rise (SLR) on the spatial 

distribution of mangrove species and estimate the potential inundation and subsequent 

mangrove area loss, a Geospatial model of potentially inundated areas was developed 

using the high resolution (<1 m vertical error) DEM data was obtained from Water 

Resources Planning Organization (WRPO), Bangladesh. The Landsat Operational 

Land Imager (OLI) data, obtained from the Center for Earth Resources Observation 

and Science (EROS) website (www. glovis.usgs.gov), was also used to map the 

mangrove species composition of the Bangladesh Sundarbans to overlay with the 

DEM data to see how mangrove species face to three different SLR scenarios of 0.46 

m (low), 0.75 m (medium) and 1.48 m based on the mean and peak projections under 

the RCP 4.5 scenario for West Bengal, India (Payo et al., 2016), and the extreme case 

scenario resembles the Hþþ scenario range which considers the 95% value for RCP 

8.5 (0.98 m) plus 0.5 m associated with Ice Sheet melting (Levermann et al., 2014). 

The extreme case scenario is considered plausible but unlikely (Allen et al., 2014). 

The mangrove areas of 2646 ha, 9599 ha and 74,720 ha are projected to be inundated 

and subsequently lost by the end of the twenty first century for the low, medium and 

high SLR scenarios respectively under the net subsidence rate ±2.4 mm/ year relative 

to the baseline year 2000. 
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5.2 Future Work 

For future work suggest to focus on developing a geospatial model of a 

combination DEM with high spatial resolution and Sea level rise data observing by 

tide gauge or altimeter satellite. This could be assessing the accuracy of this model in 

the future.  This future work should be considering and research in more detail in 

Cambodia, while our research was the first knowledge about the vulnerable area of 

mangrove forests that affected by future Sea level rise using advanced technology of 

Remote Sensing (RS) and GIS model. Our research result might be accurate or not 

accurate depended on developing a geospatial model using the medium spatial 

resolution of DEM overlap with land cover’s mangrove forests. The main reason to 

research as s study about the potential impacts of Sea level rise to mangrove forests. 

In the previous research studies, mostly used the lower accuracy DEM to create a 

Geospatial model to measure the effect of Sea level rise on land cover and mangrove 

forests. Although this study is really important to enhance the mangrove forests 

changes and show resilience to future Sea level rise. 

5.3 Conclusion 

A quantitative of mangrove forests maps in Peam Krasop Wildlife Sanctuary 

between 2015 and 2020, the results show that mangrove forests areas in 2015, 2016, 

2017, 2018, 2019, and 2020, were estimated at 7157.90 ha, 7495.21 ha, 7337.47 ha, 

6436.26 ha, 6761.66 ha, and 7045.64 ha. 

Either, mangrove forest areas in PKWS in this study were analyzed changed 

from 2015 until 2020 based on MOLUSCE. Our contribution to mangrove forest 

areas changes in this period time. Mangrove forests were significantly increased by 

about 337.31 ha between 2015 and 2016. In contrast, mangrove forests in PKWS were 

decreased 157.74 ha in 2017. Similarly, mangrove forests have continued to lose 

901.21 ha from 7337.47 ha to 6436.26 ha in 2018. However, mangrove forests have 

started to increase 325.40 ha in PKWS in 2019, were increased from 6436.26 ha to 

6761.66 ha. Mangrove forests have continued to increase by approximately 283.98 ha 

in 2020 as well. The total long-term changes of mangrove forests in Peam Krasop 
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Wildlife Sanctuary from 2015 to 2020, mangrove forests were lost about 112.26 ha 

from 7157.90 ha to 7045.64 ha. 

Therefore, based on the results provide a new knowledge about the vulnerable 

area of mangrove forests that will influence by future Sea level rise. Especially, the 

lowly areas of mangrove forests are projected to inundate or impacted areas about 

4.44 ha by SLR 40 to 60 cm at the end of the twenty-first century, and mangrove 

forest areas are predicted to be inundated by 53.14 ha by high Sea level rise scenarios 

1 m respectively. 
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Appendix 1: Remote sensing data (Sentinel-2 imageries with Band composite 

from 2015 to 2020) 

  
Date: 31 12 2015         Date: 09 02 2016 

  
Date: 20 12 2017       Date: 25 12 2018 

  
   Date: 10 12 2019        Date: 29 12 2020 
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Appendix 2: Remote sensing data (SRTM DEM, 2014) 

    
       

Appendix 3: DEM Mosaic 

 
 

Appendix 4: DEM Clip and DEM Remove Sink 
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Appendix 5: Images subset 
 

  
Date: 31 12 2015    Date: 09 02 2016 

  

 Date: 20 12 2017     Date: 25 11 2018 

  
 Date: 10 12 2019    Date: 29 12 2020 
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Appendix 6: dzetsaka plug in 

Step 1: Dzetsaka install 

1.  First, need to install the dzetsaka plugin in QGIS software by go to Plugins > 

Manage and Install Plugins. Then search the dzetsaka plugin in the search box. 

 
 

2. When dzetsaka plug in already installed, you will see the plugin show below. 
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Step 2: Import raster data into QGIS 

1. Import raster data (the specify the file path of the satellite image from 2015 to 

2020) into QGIS by go to Layer > Add Layer > Add Raster Layer. 

 
 

 
 

2. After add raster data of the satellite image from 2015 to 2020, the screen will 

display below. 

 



 60 

Step 3: Create training data 

When the raster data were added, we need to create the training data.  

1. We go to Layer > Create Layer > New Shapefile layer. After that we will fill 

the detail of creating training data.  

 

2. There are four steps of creating training data: (1) specify the name output of 

shapefile, (2) select the geometry type as Polygon, (3) select the coordinate 

system as (Project CRS: EPSG:32648-WGS/UTM zone 48N), (4) create a new 

field for specifying class of the area as TextData type and click Add to Fields 

List, and there are two fields show on the field list. Then, click OK to start. 
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3. When the New shapefile were created, it was the time to draw the 240 samples 

data of 6 classes include Water (id 1), Mangroves (id 2), Saltmarsh (id 3), 

Forest Lands (id 4), Settlements (id 5), and Other Lands (id 6). For drawing 

these kinds of classes, we need to go to digitize toolbar, and then click on 

toggle editing (yellow pencil) to the active tool. Then click on the add polygon 

tool (green icon), and started to draw the shapes on the area of satellite images. 

When you draw finished of a class, just right-click and specify the id and class 

name. Afterward, just click save on the digitizing tool. 
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After saving the creating training samples data, we can check the training data in 

attribute data of shapefile shown as below. 

   

Step 4: Installation of scikit-learn 

If we want to use the Random Forest classifier in dzetsaka plug in, we have to install 

of scikit-learn because it can support to work on Windows. For understand more about 

scikit-lit python library, you can go direct to website: 

https://github.com/nkarasiak/dzetsaka/find/master. For install the scikit-learn in QGIS, 

Open OsGeo shall on our laptop by searching it in the search box on laptop. For Qgis3, 

just open the OsGeo shell, then: py3_env.bat, and python3 -m pip install scikit-learn 

 

https://github.com/nkarasiak/dzetsaka/find/master


 63 

 

After running the pip install scikit-learn, now we can use K-Nearest Neighbors (KNN), 

Random Forest (RF), and Support Vector Machine (SVM). In our study, we selected 

the Random Forest classification. 

 

Step 5: Classification of the satellite image: 

After we installed the scikit-learn, we can perform the classification. Go to dzetsaka 

plug in, and select Classification tool > Train Algorithm. For train algorithm 

parameters, we have 6 steps inside, (1) Input the raster file that we want to classify, (2) 

Input the training class into Input Layer, (3) Select the field as a class, (4) Select the 

algorithm to train as Random Forest, (5) for Pixel (%) keep for validation by 50%, (6) 
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we can save the output or training algorithm use for classification and save the output 

of confusion matrix for calculate the accuracy error. 

  
 

We need to open the dzetsaka plugin again. In the classification tool, we just specify 

the raster data to classify and specify ROI as “training data” by Load Model from our 

output model saving or select the column name as “class”. Then, click to specify area 

to save the output of classification. In this part, we can save models and saves matrix 

after classification if we don’t save the models and confusion matrix from the Train 

Algorithm part. After that, we can click on this button to perform the classification of 

the satellite image. When the processing is finished, you will see the output displayed 

on our screen, and we can customize the output by changing color and specifying the 

name of land cover classes. 
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Appendix 7: Training Algorithm of Random Forest classify for land cover from 

2015 to 2020 
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Appendix 8: Image classification: Land cover classification level 1 using 

Random Forest Classification in QGIS (2015-2020) 
 

 
Date: 31 12 2015                      Date: 09 02 2016 

 
 Date: 20 12 2017          Date: 25 11 2018 

 
Date: 10 12 2019            Date: 29 12 2020 
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Appendix 9: Land cover level I clip using Clip in Raster processing in ArcMap 

  

 
  Date: 31 12 2015   Date: 09 02 2016 

 
            Date: 20 12 2017   Date: 25 11 2018 

 
  Date: 10 12 2019    Date: 29 12 2020 
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Appendix 10: Land cover level II clip using Reclassify in Spatial Analyst Tools 

(ArcMap) 
 

 
 

  
   Date: 31 12 2015            Date: 09 02 2016 

 

 
  Date: 20 12 2017               Date: 25 11 2018 
 

 
      Date: 10 12 2019    Date: 29 12 2020 
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Appendix 11: Mangrove forests clips using Reclassify in Spatial Analyst Tools 

(ArcMap) 
 

 

 
             Date: 31 12 2015   Date: 09 02 2016 

 
             Date: 20 12 2017                Date: 25 11 2018 

 
  Date: 10 12 2019   Date: 29 12 2020 
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Appendix 12: Area Change Analysis using MOLUSCE in Hectare from 2015 to 

2020 
 

  
Transition matrix from 2015 to 2016 

 
Transition matrix from 2016 to 2017 

 
Transition matrix from 2017 to 2018 
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Transition matrix from 2018 to 2019 

 
 Transition matrix from 2019 to 2020 

 
Transition matrix from 2015 to 2020 
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Appendix 13: Accuracy Assessments using Calculate confusion matrix online 

 

 
Confusion Matrix calculation 2015 

 

 
Confusion Matrix calculation 2016 
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Confusion Matrix calculation 2017 

 
Confusion Matrix calculation 2018 
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Confusion Matrix calculation 2019 

 

 
Confusion Matrix calculation 2020 
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Appendix 14: SRTM DEM generated based on Sea level rise scenarios 

 

 
Inundation 40 cm 

 
Inundation 60 cm 

 
Inundation 1  m 
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