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If a positive integer n ≥ 2 is a solution of the equation

1 + 2 + 3 + · · ·+ (n− 1) = (n− 1) + (n− 0) + (n+ 1) + (n+ 2) + · · ·+ (n+ r)

for some integer r, n is called a neo balancing number and r is called a neo balancer

corresponding to neo balancing number n. The purpose of this paper is to establish

a generating function of neo balancing numbers, recurrence relations for neo balancing

numbers and an application of neo balancing numbers to a Diophantine equation. More-

over, we prove the relations between neo balancing numbers and balancing numbers.
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Notation

Z Set of all integers.

Z+ Set of all positive integers.

Bn The nth balancing numbers.

Cn The nth Lucas balancing numbers.

bn The nth cobalancing numbers.

Fn The nth Fibonacci numbers.

Ln The nth Lucas numbers.

i The imaginary unit.

Pn The nth neo balancing numbers.

Qn The nth Lucas neo balancing numbers.



CHAPTER 1

INTRODUCTION

In this chapter, wewill introduce some background on balancing numbers and some

properties of balancing numbers.

Introduction

The definition of balancing numbers was introduced by Behera and Panda (1999).

An integer n ∈ Z+ is called a balancing number if n is a solution of

1 + 2 + 3 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (1.1)

for some r ∈ Z+. Here r is called the balancer corresponding to the balancing number

n. For example,

n = 6, r = 2

1 + 2 + 3 + 4 + (6− 1) = (6 + 1) + (6 + 2)

n = 35, r = 14

1 + 2 + 3 + · · ·+ (35− 1) = (35 + 1) + (35 + 2) + (35 + 3) + · · ·+ (35 + 14).

Then, they found that n is a balancing number if and only if n2 is a triangular

number. Also n is a balancing number if and only if 8n2+1 is a perfect square. In addi-

tion, they found the generating function of balancing numbers, the non-linear first order

recurrence, the second order linear recurrence, recurrence relations for balancing num-

bers, nonrecursive form for balancing numbers and an application of balancing numbers

to a Diophantine equation.
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Panda (2006) established some other interesting arithmetic-type, de-Moivre’s-

type and trigonometric-type properties of balancing numbers. Panda also established an

important property concerning the greatest common divisor of two balancing numbers.

In this thesis, wewill considernwhich is a positive integer solution of equation

1+2+3+ · · ·+(n−1) = (n−1)+(n+0)+(n+1)+(n+2)+ · · ·+(n+ r) (1.2)

for some integer r. The number n is called a neo balancing number and r is called the

neo balancer corresponding to the neo balancing number n. We expect that they have

properties similar to those of balancing numbers. In addition, we expect that there are

relationships between balancing numbers and neo balancing numbers.

Research Objectives

1. To study balancing numbers and their properties.

2. To introduce neo balancing numbers.

3. To study properties of neo balancing numbers.

4. To study relationships between balancing numbers and neo

balancing numbers.

Scope of the study

In this thesis, we will study neo balancing numbers n ∈ Z+ which satisfy the

equation

1 + 2 + 3 + · · ·+ (n− 1) = (n− 1) + (n+ 0) + (n+ 1) + (n+ 2) + · · ·+ (n+ r)

for some r ∈ Z+ ∪ {−1} and study properties of neo balancing numbers. Finally, we

will try to study relationships between neo balancing numbers and balancing numbers.



CHAPTER 2

PRELIMINARIES AND LITERATURE REVIEWS

In this chapter, we will introduce important preliminary notes and some literature

reviews concerning neo balancing numbers and balancing numbers.

Preliminaries

Triangular numbers

Definition 2.1. (Garge & Shirali, 2012) Triangular numbers are numbers associated

with triangular arrays of dots. The idea is easier to convey using pictures than words;

see Figure 2.1. We see from the figure that if Tn denotes the nth triangular number, then

T1 = 1, T2 = T1 + 2, T3 = T2 + 3, T4 = T3 + 4. Thus

Tn = Tn−1 + n

leading to:

Figure 2.1 The first six triangular numbers.

Diophantine equation

Definition 2.2. (Sundstrom, 2006) An equation whose solutions are required to be in-

tegers is called a Diophantine equation.
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Fibonacci sequence

Definition 2.3. (Vajda, 2008) The first of two Fibonacci numbers are F1 = 1, F2 = 1,

and other terms of the sequence are obtained by means of the recurrence relation

Fn+1 = Fn + Fn−1, n ≥ 2.

Lucas sequence

Definition 2.4. (Vajda, 2008) Lucas Sequence is also obtained from the same recurrence

relation as that for Fibonacci numbers. The first two Lucas numbers areL1 = 1, L2 = 3

and other terms of the sequence are obtained by means of the recurrence relation

Ln+1 = Ln + Ln−1, n ≥ 2.

De Moivre’s formula

Definition 2.5. (Alfors, 1979) For any real number x and integer n it holds that

(cos(x) + i sin(x))n = cos (nx) + i sin (nx)

where i is the imaginary unit (i2 = −1).

Perfect numbers

Definition 2.6. (Leinster, 2001) For any positive integer n, define σ(n) =
∑

d|n d, the

sum of the positive divisors of n, and call n perfect if σ(n) = 2n.

Relavant research

(Behera & Panda, 1999) An integer n ∈ Z+ is called a balancing number if n is a

solution of

1 + 2 + 3 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (2.1)

for some r ∈ Z+. Here r is called the balancer corresponding to the balancing number

n. It follows from equation (2.1) that, if n is a balancing number with balancer r, then
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n2 =
(n+ r)(n+ r + 1)

2
(2.2)

and

r =
−(2n+ 1) +

√
8n2 + 1

2
. (2.3)

It is clear from equation (2.2) that we have the following result.

Theorem 2.7. (Behera & Panda, 1999) For each n ∈ Z+, n is a balancing number if

and only if n2 is a triangular number.

Also, it follows from equation (2.3) that we obtain

Theorem 2.8. (Behera & Panda, 1999) For each n ∈ Z+, n is a balancing number if

and only if 8n2 + 1 is a perfect square.

Behera and Panda also proved many other results as follows.

Theorem 2.9. (Behera & Panda, 1999) If x is a balancing number, its next balancing

number is 3x+
√
8x2 + 1 and its previous balancing numbers is 3x−

√
8x2 + 1.

Lemma 2.10. (Behera&Panda, 1999) If x is an even balancing number, 3x+
√
8x2 + 1

is odd.

Lemma 2.11. (Behera & Panda, 1999) If x is an odd balancing number, 3x+
√
8x2 + 1

is even.

Lemma 2.12. (Behera & Panda, 1999) IfBn is the nth balancing number, thenBn+1 =

3Bn +
√

8B2
n + 1 and Bn−1 = 3Bn −

√
8B2

n + 1 .

Lemma 2.13. (Behera & Panda, 1999) If Bn is the nth balancing number, then its

recurrence relation is Bn+1 = 6Bn −Bn−1 when B0 = 1 and B1 = 6.

Theorem 2.14. (Behera & Panda, 1999)

(a) Bn+1 ·Bn−1 = (Bn + 1)(Bn − 1).

(b) Bn = Bk ·Bn−k −Bk−1 ·Bn−k−1 for any positive integer k < n.

(c) B2n = B2
n −B2

n−1.

(d) B2n+1 = Bn(Bn+1 −Bn−1).
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Lemma 2.15. (Behera & Panda, 1999) IfBn is the nth balancing number, then its Binet

form is

Bn =
λn+1
1 − λn+1

2

λ1 − λ2

;n = 0, 1, 2, ..., (2.4)

where λ1 = 3 +
√
8 and λ2 = 3−

√
8.

Theorem 2.16. (Behera & Panda, 1999) The solutions of the Diophantine equation

x2 + (x+ 1)2 = y2 are given by

x =

√
1

2
(
√
8B2 + 1− 1)− 1

2
(2.5)

y =
1

2

√
1 +

√
8B2 + 1 (2.6)

when B is an odd balancing number.

Panda (2006) established some fascinating properties of balancing numbers. Panda

and behera defined that 1 is also a balancing number(the reason is that 8 · 12 + 1 = 9

is a perfect square), we can set B0 = 1, B1 = 6, and so on, using the symbol Bn for

the nth balancing number. To standardize the notation on par with Fibonacci numbers,

Panda relabeled the balacing numbers by setting B1 = 1, B2 = 6 and so on. But we do

not relabel the balancing numbers in this thesis. Some results of balancing numbers can

be stated with this new convention as follows:

The second order linear recurrence:

Bn+1 = 6Bn −Bn−1;n = 2, 3, .... (2.7)

The non-linear first order recurrence:

Bn+1 = 3Bn +
√

8B2
n + 1;n = 1, 2, 3, .... (2.8)

The relation:

Bn = Br+1Bn−r −BrBn−r−1; r = 1, 2, 3, ..., n− 2. (2.9)

The Binet form:

Bn =
λn
1 − λn

2

λ1 − λ2

;n = 1, 2, 3, ..., (2.10)

where λ1 = 3 +
√
8 and λ2 = 3−

√
8.

The interesting relation:
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Bn+1Bn−1 = (Bn + 1)(Bn − 1). (2.11)

Throughout Fn is the nth Fibonacci number, Ln is the nth Lucas number, Bn is

the nth Balancing number and Cn =
√
8B2

n + 1 where n ∈ Z+. Some of the following

results suggest that Cn is associated with Bn in the way Ln is associated with Fn. We

know that if x and y are complex numbers, then (x+ y)(x− y) = x2 − y2.

In the following result, Panda (2006) obtained an analogous property of balancing num-

bers.

Theorem 2.17. (Panda, 2006) Ifm and n are natural numbers andm > n, then

(Bm +Bn)(Bm = Bn) = Bm+nBm−n.

Remark. The Fibonacci numbers satisfy a similar property

Fm+nFm−n = F 2
m − (−1)m+nF 2

n .

If n is a natural number, then 1+3+ · · ·+(2n−1) = n2, 2+4+ · · ·+2n = n(n+1)

and 1 + 2 + · · · + 2n = n(2n + 1). In the following result, Panda obtained properties

of balancing numbers similar to the above three identities.

Theorem 2.18. (Panda, 2006) If n is natural number, then

(a) B1 +B3 + · · ·+B2n−1 = B2
n

(b) B2 +B4 + · · ·+B2n = BnBn+1

(c) B1 +B2 + · · ·+B2n = Bn(Bn +Bn+1).

The complex identity (cos(x) + i sin(x))n = cos (nx) + i sin (nx) is known as the

de-Moivre’s formula. The following theorem looks like de-Moivre’s formula.

Theorem 2.19. (Panda, 2006) If n and r are natural numbers, then

(Cn +
√
8Bn)

r = Cnr +
√
8Bnr.
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Remark. The Fibonacci numbers satisfy a similar property[
Ln +

√
5Fn

2

]r

=
Lrn +

√
5Frn

2
.

Corollary 2.20. (Panda, 2006) If n and r are natural numbers, then

(Cn −
√
8Bn)

r = Cnr −
√
8Bnr.

The trigonometric identity sin (x+ y) = sinx cos y+cos x sin y is quite well known.

In the following theorem, Panda obtained analogous properties of balancing numbers.

Theorem 2.21. (Panda, 2006) Ifm and n are natural numbers, then

Bm+n = BmCn + CmBn.

Remark. The corresponding identity for Fibonacci numbers is

Fm+n =
1

2
[FmLn + LmFn].

Corollary 2.22. (Panda, 2006) If n and r are natural numbers andm > n, then

Bm−n = BmCn − CmBn.

The following corollary is similar to the trigonometric identity sin 2x = 2 sinx cosx.

Corollary 2.23. (Panda, 2006) If n is a natural numbers, then

B2n = 2BnCn.

For any two integersm and n, Panda denoted the greatest common divisor of

m and n by (m,n). The Fibonacci property Fm divides Fn if and only ifm divides n and

(Fm, Fn) = F(m,n). In the following theorem, Panda obtained a property of balancing

numbers analogous to that of Fibonacci numbers.

Theorem 2.24. (Panda, 2006) Ifm and n are natural numbers, then
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Bm divides Bn if and only ifm divides n.

We need the following lemmas to prove theorem 2.24.

Lemma 2.25. (Panda, 2006) If n is a natural number, then

(Bn, Cn) = 1.

Lemma 2.26. (Panda, 2006) If n and k are natural numbers, then

Bk divides Bnk.

Lemma 2.27. (Panda, 2006) If n and k are natural numbers, then

(Bk, Cnk) = 1.

Lemma 2.28. (Panda, 2006) If n and k are natural numbers and Bk divides Bn, then

k divides n.

Finally, Panda proves the following theorem.

Theorem 2.29. (Panda, 2006) Ifm and n are natural numbers, then

(Bm, Bn) = B(m,n).

Literature Reviews

Liptai (2004) studied Fibonacci numbers in balancing numbers. Liptai found

that there are no Fibonacci Balancing numbers except 1 using connection with Fibonacci

sequence, Lucas sequence and Pell’s equation. Later on Panda (2007) gave other results

of balancing numbers by proving that the only sequence cobalancing numbers (the def-

inition is given below) in the Fibonacci sequence is F2 = 1.

Panda and Ray (2005) introduced cobalancing numbers and cobalancers in a

way similar to the balancing numbers. They call n ∈ Z+ a cobalancing number if

1 + 2 + 3 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n+ r).



10

for some r ∈ Z+. Here, they call r the cobalancer corresponding to the cobalancing

number n. The first three cobalancing numbers are 2, 14 and 84 with cobalancers 1, 6

and 35, respectively.

They have 2 theorems that, n is a cobalancing number if and only if 8n2+8n+1

is a perfect square, that is, n(n+ 1) is a triangular number. Since 8(0)2 + 8(0) + 1 = 1

is a perfect square, they count 0 as a cobalancing number. Furthermore, they use the

notation bn for the nth cobalancing number. They set b1 = 0, b2 = 2 and b3 = 14, where

n is a positive integer. Then the recurrence relation for cobalancing number is given by

bn+1 = 6bn − bn−1 + 2.

Some results were established by Panda and Ray as follows:

The function generating next cobalancing numbers is given by

g(x) = 3x+
√
8x2 + 8x+ 1 + 1 (2.12)

when x is a cobalancing number.

Some other interesting relations concerning cobalancing numbers include:

(a) (bn − 1)2 = 1 + bn−1bn+1.

(b) bn = bk +Bkbn−k+1 −Bk−1bn−k for any positive integer n > k ≥ 2.

(c) b2n = Bnbn+1 − bn(Bn−1 − 1).

(d) b2n+1 = (Bn+1 + 1)bn+1 −Bnbn.

The Binet form:

bn =
λ
n−1/2
1 − λ

n−1/2
2

λ1 − λ2

− 1

2
;n = 1, 2, ..., (2.13)

where λ1 = 3 +
√
8, λ2 = 3−

√
8,
√
λ1 = 1 +

√
2 and

√
λ2 = 1−

√
2 .

An application of cobalancing numbers to a Diophantine equation is as fol-

lows.

Panda and Ray considered the solution of

x2 + (x+ 1)2 = y2 (2.14)

They let b be any cobalancing number and r its cobalancer and c = b + r. Then they

have

x = b+ r = c (2.15)

and
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y =
√
2c2 + 2c+ 1. (2.16)

is a solution to equation (2.14).

Keskin andKaraatly (2012) studied properties of balancing nubmers and square

triangular numbers using connection with triangular numbers, Oblong numbers, gener-

alized Fibonacci numbers, generalized Lucas numbers, Pell sequence and Pell-Lucas

sequence.

Panda and Davala (2015) studied the perfect numbers in the balancing num-

bers called perfect balancing numbers. However, 6 is the only perfect number in the

balancing numbers using results of Pell and associated Pell numbers and Fibonacci and

Lucas numbers including balancing and Lucas balancing numbers.

Gautam (2018) studied the origin of balancing numbers. In addition, he found

connection with triangular numbers, Pells numbers and Fibonacci numbers. He dis-

cussed the generating functions and recurrence relations which play precious role in

searching more balancing numbers from the given balancing numbers.



CHAPTER 3

RESEARCHMETHODOLOGY

In this thesis, we will study neo balancing numbers. We do the following process.

1. We study behavior equation

1 + 2 + 3 + · · ·+ (n− 1) = (n− 1) + (n+ 0) + (n+ 1) + (n+ 2) + · · ·+ (n+ r)

2. We make conjectures about neo balancing numbers based on known results about

balancing numbers.

3. We prove our conjectures and make a conclusion.

4. We establish the some relationship between neo balancing numbers and balancing

numbers.

5. We give a relationship between neo balancing numbers and solutions of a certain

Diophantine equation.
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CHAPTER 4

RESULTS

4.1 Neo balancing numbers

Let n be a positive integer solution of

1+2+3+ · · ·+(n−1) = (n−1)+(n+0)+(n+1)+(n+2)+ · · ·+(n+ r) (4.1)

for some integer r. Then n is called the neo balancing number and r is called the neo

balancer corresponding to the neo balancing number n. For example, 2, 7, 36 and 205

are neo balancing numbers with balancers -1, 1, 13 and 83, respectively. We rewrite

equation (4.1) in the form

(n− 1)2 =
(n+ r)(n+ r + 1)

2
(4.2)

or

r =
−(2n+ 1) +

√
8(n− 1)2 + 1

2
. (4.3)

From (4.2), n is a neo balancing number if and only if (n− 1)2 is a triangular number.

Also, by (4.3), n is a neo balancing number if and only if 8(n − 1)2 + 1 is a perfect

square.

The nth neo balancing number is denoted by Pn, the nth balancer is denoted by En

and the nth Lucas-balancing number is denoted by Qn =
√

8(Pn − 1)2 + 1. Set initial

values B1 = 2 and B2 = 7 and so on.

4.1.1 Function generating neo balancing numbers

In this section we will show some functions that generate next neo balancing numbers.

We will show that if x is a balancing number, then

p(x) = 3(x− 1) + 1 +
√

8(x− 1)2 + 1 (4.4)

is also a neo balancing numbers.

Theorem 4.1. For any neo balancing number x, p(x) and (p ◦ p ◦ · · · ◦ p)(x) are also
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neo balancing numbers.

Proof. Since x is a neo balancing number, we obtain 8(x − 1)2 + 1 is a perfect square

and we have

8(p(x)− 1)2 + 1 = 8(9)(x− 1)2 + 2(8)(3)(x− 1)
√

8(x− 1)2 + 1 + 82(x− 1)2 + 9

= (8(x− 1))2 + 2[(8)(x− 1)][(3)
√

8(x− 1)2 + 1] + [3
√
8(x− 1)2 + 1]2

= [8(x− 1) + 3
√

8(x− 1)2 + 1]2

is a perfect square too. Then p(x) is a neo balancing number. By applying p(x) repeat-

edly, it follows that (p ◦ p ◦ · · · ◦ p)(x) is also a neo balancing number.

4.1.2 Finding the next neo balancing numbers

We have shown that p(x) generate neo balancing numbers. In this section we will show

in addition that p(x) is the function generating next neo balancing numbers.

Theorem 4.2. If x is a neo balancing number, then the next neo balancing number is

p(x) = 3(x− 1) + 1 +
√

8(x− 1)2 + 1 (4.5)

and consequently, the previous one is

p−1(x) = 3(x− 1) + 1−
√

8(x− 1)2 + 1. (4.6)

Proof. Note that p(x) defines a function p : [0,∞) → [2,∞). Since

p′(x) = 3 +
8(x− 1)√

8(x− 1)2 + 1
> 0,

p is strictly increasing. It is clear that x < p(x), so p is injective. Thus p−1 exists.

Since p is strictly increasing, p−1 is also strictly increasing. Let u(x) = p−1(x). Thus

u(x) = 3(x− 1) + 1±
√

8(x− 1)2 + 1.
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Figure 2.2 Graph of function p(x) and p−1(x).

By figure 2.2, we have p(x) ̸= p−1(x). Then we obtain

u = 3(x− 1) + 1−
√
8(x− 1)2 + 1. (4.7)

Since n is a neo balancing number if and only if 8(n− 1)2 + 1 is a perfect square and

8(u− 1)2 + 1 = 8(9)(x− 1)2 − 2(8)(3)(x− 1)
√

8(x− 1)2 + 1 + 82(x− 1)2 + 9

= (8(x− 1))2 − 2[(8)(x− 1)][(3)
√
8(x− 1)2 + 1] + [3

√
8(x− 1)2 + 1]2

= [8(x− 1)− 3
√
8(x− 1)2 + 1]2,

we have u = p−1(x) is a neo balancing number. We let Pn be the nth neo balancing

number and P0 = 1 such that Pn = p(Pn−1) for n = 1, 2, . . .. Thus, P1 = 2, P2 = 7,

P3 = 36 and so on. Now we will prove that there is no neo balancing number between

x and p(x) by the method of induction.

LetHi be the hypothesis that there is no neo balancing number between Pi and Pi+1.

Since P1 = 2 and P2 = 7 it is clear that there is no neo balancing number between P1

and P2. Assume Hn is true. We will show that Hn+1 is true, by contradiction. Suppose

Hn+1 is false, so there is a neo balancing number δ such that

Pn+1 < δ < Pn+2.

Thus,

p−1(Pn+1) < p−1(δ) < p−1(Pn+2).

We will get

Pn < p−1(δ) < Pn+1.

Since p−1(δ) is a neo balancing number, this contradicts the induction hypothesis. So

Hn+1 is true. Therefore the neo balancing number next to x is p(x). Since p(p−1(x)) =

x, it follows that p−1(x) is the largest neo balancing number less than x.
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4.2 Properties of neo balancing numbers and balancing numbers

4.2.1 Recuurence relations between neo balancing numbers and balanc-

ing numbers

We have known that P0 = 1 P1 = 2, P2 = 7, P3 = 36, and so on. If Pn is the nth neo

balancing number, then

Pn+1 = 3(Pn − 1) + 1 +
√
8(Pn − 1)2 + 1 (4.8)

and

Pn−1 = 3(Pn − 1) + 1−
√
8(Pn − 1)2 + 1. (4.9)

It is clear from (4.8) and (4.9) that the neo balancing numbers obey the following recur-

rence relation:

Pn+1 = 6Pn − Pn−1 − 4 (4.10)

or

Pn+1 = 6Pn − Pn−1 (4.11)

wherePn = Pn−1. Also, the balancing numbers obey the following recurrence relation:

Bn+1 = 6Bn −Bn−1. (4.12)

Using the recurrence relation (4.10), (4.11) and (4.12) we can obtain some other inter-

esting relations concerning neo balancing numbers and balancing numbers.

Theorem 4.3. LetBn be the nth balancing number, Pn be the nth neo balancing number

and 1 ≤ k ≤ n for any positive integers n and k. Then we have the following relations.

(a) Pn+1Pn−1 = (Pn + 5)(Pn − 1) .

(b) Pn+1Pn−1 + 9 = (Pn + 2)2.

(c) Pn = BkPn−k −Bk−1Pn−k−1 + 1.

(d) Pn = Bn−1 + 1.

(e) Pn ·Bn = PnPn+1 − Pn.

(f) Pn = Pk+1 · Pn−k − Pk · Pn−k−1 + 1.

(g) P2n+1 = Pn+1
2 − Pn

2
+ 1.

(h) P2n = Pn(Pn+1 − Pn−1) + 1.
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Proof. From (4.8) and (4.9), it follows that

Pn+1Pn−1 = (3(Pn − 1) + 1 +
√

8(Pn − 1)2 + 1)(3(Pn − 1) + 1−
√

8(Pn − 1)2 + 1)

= P 2
n + 4Pn − 5

= (Pn + 5)(Pn − 1).

This completes the proof of (a) and the proof of (b) is analogous to (a) , i.e.,

Pn+1Pn−1 + 9 = (3(Pn − 1) + 1 +
√

8(Pn − 1)2 + 1)(3(Pn − 1) + 1−
√

8(Pn − 1)2 + 1) + 9

= P 2
n + 4Pn − 4

= (Pn + 2)2.

The proof of (c) is based on mathematical induction on k. Clearly, (c) is true for n > 1

and k = 1. Assume that (c) is true for k = r, i.e., Pn = BrPn−r − Br−1Pn−r−1 + 1

Thus,

Br+1Pn−r−1 −BrPn−r−2 + 1 = (6Br −Br−1)Pn−r−1 −BrPn−r−2 + 1

= 6BrPn−r−1 −Br−1Pn−r−1 −BrPn−r−2 + 1

= Br(6Pn−r−1 − Pn−r−2)−Br−1Pn−r−1 + 1

= BrPn−r −Br−1Pn−r−1 + 1

= Pn.

Therefore, (c) is true for k = r + 1. This completes the proof of (c).

The proof of (d) follows by replacing k = n− 1 in (c). From (d), it follows that

Pn ·Bn = Pn(Pn+1 − 1)

= PnPn+1 − Pn.
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This completes the proof of (e). From (c) and (d), it follows that

Pn = BkPn−k −Bk−1Pn−k−1 + 1

= (Pk+1 − 1)Pn−k − (Pk − 1)Pn−k−1 + 1

= Pk+1 · Pn−k − Pk · Pn−k−1 + 1.

This completes the proof of (f). Finally, the proof of (g) follows by replacing n with

2n + 1 and k with n in (f). Similarly, the proof of (h) follows by replacing n with 2n

and k with n in (f). This completes the proof of Theorem 4.3.

4.2.2 Nonrecursive form for neo balancing numbers

In this section, we shall obtain another nonrecursive form for Pn by solving the recur-

rence relation (4.11) as a difference equation. We rewrite the recurrence relation (4.11)

in the form

Pn+1 − 6Pn + Pn−1 = 0. (4.13)

Then we have a second-order linear homogeneous difference equation whose auxiliary

equation is

λ2 − 6λ+ 1 = 0. (4.14)

The roots λ1 = 3 +
√
8 and λ2 = 3−

√
8 of (4.14) are real and unequal. Thus

Pn = Aλn
1 +Bλn

2 . (4.15)

Solving for A and B, we obtain

A =
1

λ1 − λ2

and B = − 1

λ1 − λ2

.

Substituting these values into (4.15) we get

Pn =
λn
1 − λn

2

λ1 − λ2

; n = 0, 1, 2, 3, . . .

or

Pn =
λn
1 − λn

2

λ1 − λ2

+ 1 ; n = 0, 1, 2, 3, . . .

where λ1 = 3 +
√
8 and λ2 = 3−

√
8 . Then we obtain the following theorem for neo

balancing numbers.
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Theorem 4.4. If Pn is the nth neo balancing number, then its Binet form is

Pn =
λn
1 − λn

2

λ1 − λ2

; n = 0, 1, 2, 3, . . .

where λ1 = 3 +
√
8 and λ2 = 3−

√
8 .

Theorem 4.5. If a and b are natural numbers and a > b, then

Pa+b · Pa−b = (Pa − Pb)(Pa + Pb).

Proof.

Pa+b · Pa−b =
(λa+b

1 − λa+b
2 )(λa−b

1 − λa−b
2 )

(λ1 − λ2)2

=
λ2a
1 − λa−b

1 λa+b
2 − λa+b

1 λa−b
2 + λ2a

2

(λ1 − λ2)2

=
λ2a
1 + λ2a

2 − λa−b
1 λa−b

2 (λ2b
1 + λ2b

2 )

(λ1 − λ2)2

=
λ2a
1 − 2 + λ2a

2

(λ1 − λ2)2
− λ2b

1 − 2 + λ2b
2

(λ1 − λ2)2

= (
λa
1 − λa

2

λ1 − λ2

)2 − (
λb
1 − λb

2

λ1 − λ2

)2

= Pa
2 − Pb

2

= (Pa + Pb)(Pa − Pb).
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Theorem 4.6. If a and b are natural numbers and a ̸= b, then

Pa+b

Pa−b

=
(Pa − Pb)(Pa + Pb)

Pa−b
2

Proof.

Pa+b

Pa−b

=
Pa+b

Pa−b
2Pa−b

=
(Pa − Pb)(Pa + Pb)

Pa−b
2

Theorem 4.7. If a and b are natural numbers and a ̸= b, then

(Pa+b + Pa−b)
n =

n∑
r=0

[(
n
r

) [∑n
s=0

(
n
s

)
Pa

n
(−Pb)

n−s
] [∑n

t=0

(
n
t

)
Pa

n
(Pb)

n−t
]

Pa−b
r

]
for any integers s and t.

Proof.

(Pa+b + Pa−b)
n =

n∑
r=0

(
n

r

)
Pa+b

n
Pa−b

n−r

=
n∑

r=0

(
n

r

)[
(Pa − Pb)

n(Pa + Pb)
n

Pa−b
r

]

=
n∑

r=0

[(
n
r

) [∑n
s=0

(
n
s

)
Pa

n
(−Pb)

n−s
] [∑n

t=0

(
n
t

)
Pa

n
(Pb)

n−t
]

Pa−b
r

]
.

4.2.3 Application of neo balancing numbers to a Diophatine equation

The solutions of a Diophantine equation

x2 + y2 = z2, x, y, z ∈ Z+ (4.16)

are quite well known as the Pythagorean triplet. We will consider the solution of (4.16)

in a particular case,

x2 + (x+ 1)2 = y2. (4.17)
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In this sectionwewill find the solution of (4.17) using neo balancing numbers as follows.

Let (x, y) be a solution of (4.17). Since 2y2 − 1 = (2x+ 1)2 and

(2y2 − 1)2y2

2
= y2(2y2 − 1),

we obtain
(2y2 − 1)2y2

2

is a triangular number as well as a perfect square. Thus,

P =
√
y2(2y2 − 1) + 1 (4.18)

is an even neo balancing number (since y2 and 2y2−1 are odd). Since y2 ≥ 1, it follows

from (4.18) that

y =

√
1 +

√
8(P − 1)2 + 1

2
. (4.19)

From (4.17) and (4.19), we obtain

x =
−2 +

√
2
√
8(P − 1)2 + 1− 2

4

For example, 2 is a neo balancing number, so we obtain

x =
−2 +

√
2
√

8(2− 1)2 + 1− 2

4
= 0,

y =

√
1 +

√
8(2− 1)2 + 1

2
= 1.

Thus, (0, 1) is a solution of

x2 + (x+ 1)2 = y2, i.e.,

02 + (0 + 1)2 = 12.
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4.3 The connection of analogous properties of neo balancing num-

bers

Panda (2009) introduced some fascinating properties of balancing numbers. In this sec-

tion we will introduce some properties of neo balancing numbers as follows.

4.3.1 Arithmetic properties of neo balancing numbers

We know that, if x and y are complex numbers, then

(x+ y)(x− y) = x2 − y2.

So we obtained an analogous property of neo balancing numbers as Theorem 4.5.

If n is a natural number, then

1 + 3 + · · ·+ (2n− 1) = n2,

2 + 4 + · · ·+ 2n = n(n+ 1),

1 + 2 + · · ·+ 2n = n(2n+ 1).

In the following theorem, we obtain properties of neo balancing numbers similar to the

above three identities.

Theorem 4.8. If n is a natural number, then

(a) P1 + P3 + P5 + · · ·+ P2n−1 = Pn
2.

(b) P2 + P4 + P6 + · · ·+ P2n = Pn · Pn+1.

(c) P1 + P2 + P3 + · · ·+ P2n = Pn(Pn + Pn+1).

Proof. From relation (h) of Theorem 4.3, we obtain

P2n+1 = Pn+1
2 − Pn

2,

so (a) follows.

From relation (i) of Theorem 4.3, we replace n by n+ 1 as follows

P2n+2 = Pn+2 · Pn+1 − Pn+1 · Pn,

so (b) follows.

Finally, the identity (c) directly follows from (a) and (b).
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4.3.2 De-Moivre properties of neo balancing numbers

The complex identity

(cos(x) + i sin(x))n = cos (nx) + i sin (nx)

is known as the de-Moivre’s formula. The following theorem looks like de-Moivre’s

formula. We define Qn to be the nth Lucas neo balancing number given by Qn =√
8Pn

2
+ 1.

Theorem 4.9. If n and r are natural numbers, then

(Qn +
√
8Pn)

r = Qnr +
√
8Pnr.

Proof. Form Theorem 4.4, we obtain

Q2
n = 8Pn

2
+ 1 = 8

[
λn
1−λn

2

λ1−λ2

]
+ 1 =

[
λn
1−λn

2

2

]2
.

Therefore,

Qn =
[
λn
1−λn

2

2

]
.

Since

Qn +
√
8Pn =

[
λn
1 − λn

2

2

]
+
√
8

[
λn
1 − λn

2

λ1 − λ2

]
= λn

1 ,

we obtain

(Qn +
√
8Pn)

r = (λn
1 )

r = λnr
1 = Qnr +

√
8Pnr.

Remark. The Fibonacci numbers satisfy a similar property[
Ln +

√
5Fn

2

]r

=
Lrn +

√
5Frn

2
(4.20)

Corollary 4.10. If n and r are natural numbers, then

(Qn −
√
8Pn)

r = Qnr −
√
8Pnr.
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Proof. Since

Qn −
√
8Pn =

[
λn
1 − λn

2

2

]
−

√
8

[
λn
1 − λn

2

λ1 − λ2

]
= λn

2 ,

the result follows easily.

4.3.3 Trigonometric properties of neo balancing numbers

The trigonometric identity

sin (x+ y) = sin(x) cos(y) + cos(x) sin(y)

is quite well known.

Theorem 4.11. Ifm and n are natural numbers, then

Pm+n = QmPn +QnPm.

Proof. Since

(Qm +
√
8Pm)(Qn +

√
8Pn) = λm

1 λ
n
1 = λm+n

1 = Qm+n +
√
8Pm+n

and

(Qm +
√
8Pm)(Qn +

√
8Pn) = QmQn + 8PmPn +

√
8(QnPm +QmPn),

we compare them and equate the irrational part from both sides to obtain

Pm+n = QmPn +QnPm.

Remark. The Fibonacci numbers satisfy a similar property

Fm+n =
FmLn + LmFn

2
. (4.21)

Corollary 4.12. Ifm and n are natural numbers, then

Qm+n = QmQn + 8Pm Pn.

Proof. This can be proven using the arguments in the proof of Theorem 4.11.

The following corollary is similar to the trigonometric identity
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sin 2x = 2 sin x cos x.

Corollary 4.13. Ifm is natural number, then

P2m = 2PmQm.

Proof. From Theorem 4.11, we replace n bym.

Remark. The Fibonacci numbers satisfy a similar property

F2n = FnLn. (4.22)

4.3.4 Properties concerning the greatest common divisor of two balanc-

ing numbers

Theorem 4.14. Ifm and n are natural numbers, then

Pm divides Pn if and only ifm divides n.

To prove the above theorem we need the following lemmas.

Lemma 4.15. Ifm and n are natural numbers, then

(Pn, Qn) = 1.

Proof. Since we have defined Qn =

√
8Pn

2
+ 1, we obtain Q2

n = 8Pn
2
+ 1.

Then

(Pn
2
, Q2

n) = 1 and thus (Pn, Qn) = 1.

Lemma 4.16. If n and k are natural numbers, then

Pk divides Pnk.

Proof. The proof is based on mathematical induction. Clearly, this lemma is true for

n = 1. Assuming that this lemma is true for n = r, we obtain Pk divides Prk. By

Theorem 4.11 , we have

P(r+1)k = Prk+k

= PrkQk +QrkPk.
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Thus, we obtain that Pk divides P(r+1)k.

Lemma 4.17. If n and k are natural numbers, then

(Pk, Qnk) = 1.

Proof. Since we have shown that (Pnk, Qnk) = 1 and Pk divides Pnk, we obtain that

(Pk, Qnk) = 1.

Lemma 4.18. If n and k are natural numbers and Pk divides Pn, then k divides n.

Proof. Obviously, n ≥ k and this lemma is true for n = k. By Euclid’s division lemma,

there exist integers q and r such that q ≥ 1, 0 ≤ r < k and n = qk + r. By Theorem

4.11, we have

Pn = Pqk+r = PqkQr +QqkPr.

Since Pk divides Pqk and (Pk, Qnk) = 1 by previous lemmas, we obtain that

Pk divides Pr.

Since r < k, we obtain that Pr = 0. Thus, we have r = 0 and hence n = qk. Therefore

k divides n.

Theorem 4.14 directly follows from Lemmas 4.16 and 4.18.

Remark. The Fibonacci numbers satisfy a similar property

Fm divides Fn if and only ifm divides n.

The following theorem gives a stronger result.

Theorem 4.19. Ifm and n are natural numbers, then

(Pm, Pn) = P(m,n).

Proof. Ifm = n, then the proof is trivial. Assumewithout loss of generality thatm < n.

By Euclid’s division lemma, there exist integers q1 and r1 such that q1 ≥ 1, 0 ≤ r1 < m

and n = q1m+ r1. By Theorem 4.11, we have
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(Pm, Pn) = (Pm, Pq1m+r1) = (Pm, Pq1mQr1 +Qq1mPr1).

Since Pm divides Pq1m and (Pm, Qq1m) = 1, we have

(Pm, Pn) = (Pm, Pr1) and (m,n) = (m, q1m+ r1) = (m, r1).

If r1 > 0, then there exist integers q2 and r2 such that q2 ≥ 1, 0 ≤ r2 < r1 and

m = q2r1 + r2 such that

(Pm, Pn) = (Pm, Pr1) = (Pq2r1+r2 , Pr1) = (Pq2r1Qr2 +Qq2r1Pr2 , Pr1).

Since Pr1 divides Pq2r1 and (Pr1 , Qq2r1) = 1, we have

(Pm, Pn) = (Pr2 , Pr1) and (m,n) = (q2r1 + r2, r1) = (r2, r1).

The process may be continued as long as exists ri ̸= 0. Since r1 > r2 > · · ·, it follows

that ri ≤ m− i, so that after at mostm steps some ri will be equal to zero. If rk−1 > 0

and rk = 0, then

(Pm, Pn) = (Prk−2
, Prk−1

) = (Pqkrk−1
, Prk−1

) = Prk−1

and

(m,n) = (rk−2, rk−1) = (qkrk−1, rk−1) = rk−1.

Thus,

(Pm, Pn) = Prk−1
= P(m,n).

Remark. The Fibonacci numbers satisfy a similar property

(Fm, Fn) = F(m,n).



CHAPTER 5

CONCLUSION AND DISCUSSION

In this chapter, we summarize the results about neo balancing numbers that we ob-

tain in this thesis. Firstly, we find neo balancing numbers from expected equation and

their definition. Secondly, we study and prove results about neo balancing numbers,

their properties and applications. Finally, we find similarity between properties of neo

balancing numbers and some properties of complex number, trigonometric, Fibonacci

numbers and balancing numbers.
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