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In this thesis, a combined from of the residual power series method with the

Adomian polynomial is developed for analytic treatment of the fractional logistic equa-

tions and the fractional Volterra population growth model. The Caputo operator is used

to define the derivative of fractional order. The convergent analysis of solution is pro-

posed. Illustrative examples will be examined to support the proposed analysis. The

fractional order solutions are compared to the integer order solutions.
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CHAPTER 1

INTRODUCTION

Mathematical modeling is the art of describing natural phenomena and var-

ious problems in the real world situations. The concept of mathematical modeling is

translating various problems into tractable mathematical formulations whose theoreti-

cal and numerical analysis provides useful answers for the that problems. The models

would be analyzed to describe those problems and to utilize it to represent analyze make

predictions, or provide insight into real world phenomena. One of useful mathematical

modelings is the logistic growth model which applied in biological and socials science.

In this chapter, the logistic equation, fractional calculus which is the useful tool for

solving mathematical model, the Volterra population growth model, and the residual

power series method are introduced.

Logistic equation

Mathematical models are used extensively in science such as physics, chem-

istry, biology, and engineering. The study of population growth is one of the specific

field of science which is gaining attention since the limitation of resources on our planet.

The Malthusian growth model and the logistic growth model are simple models of pop-

ulation growth. Like other mathematical model, growth model could be set as linear

equations or algebraic equations or differential equations.

In 1798, Malthus proposed the assumption that the population growth rate is

proportional to the size of the population. It is called the Malthusian growth model or

exponential growth model. The differential form of the Malthusian growth model as

dN

dt
= ρN, t ≥ 0, (1.1)

where N is is the size of the population with respect to time t, and ρ is the population

growth rate.
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Then, the solution of equation (1.1) is

N(t) = N0e
ρt,

with N0 is the size of the population at time t = 0.

The differential equation (1.1) has an interesting explanation. The left-hand

side demonstrates the rate at which the population increases or decreases with respect to

time t. The right-hand side is equal to a positive constant multiplied by the population

size. Therefore the differential equation determines that the rate at which the population

increases is proportional to the population at that point in time.

In 1838, Verhulst introduced the logistic growth model which developed from

Malthusian growth model. This growth model explains population dynamics in the

discipline of biological and social sciences. The logistic growth model is stated in the

form of nonlinear differential equation as

dN

dt
= ρN

(
1− N

K

)
, t ≥ 0, (1.2)

where ρ > 0 represents the maximum population growth rate, N is the size of the

population with respect to time t and K is the carrying capacity.

By letting u = N/K, the logistic growth model of nonlinear differential equa-

tion (1.2) becomes

du

dt
= ρu (1− u) , t ≥ 0. (1.3)

Equation (1.3) is said to be logistic equation or logistic differential equation.

The exact closed form solution of equation (1.3) is given by

u(t) =
u0

u0 + (1− u0)e−ρt
, t ≥ 0, (1.4)

where u0 is the initial value at the time t = 0.

In recent year, the logistic equation was interested by many researchers espe-

cially for the the logistic equation of fractional order. Therefore, we introduce some

basic definition and properties about the fractional derivative.
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Fractional calculus

Fractional derivative is a part of fractional calculus which has been extensively

studied in recent year. The definition of fractional derivative is extended from the

definition of derivative for any positive integer order. Many researchers have attempted

to find a proper definition of fractional derivatives for example Riemann-Liouville,

Caputo, Comformable and Hadamard. Most of them used an integral form for the

fractional derivative. Two of which are the most popular ones.

Firstly, we introduce some special function which important for fractional

calculus as Gamma and Beta function. After that, we introduce definition of fractional

calculus.

Definition 1.1. The Gamma function is a function satisfying the following form

Γ(z) =

∫ ∞

0

e−ttz−1dt, Re(z) > 0,

or Γ(z) =
Γ(z + n)

z(z + 1)(z + 2) · · · (z + n− 1)
, Re(z) > −n+ 1.

Definition 1.2. The Gamma function is a function satisfying the following equation

B(z, w) =

∫ 1

0

tz−1(1− t)w−1dt, Re(z) > 0, Re(w) > 0.

For our convenience, we use B(z, w) instead of Gamma functions. The fol-

lowing relation between Gamma and Beta function (Gradshteyn & Ryzhik, 1963)

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
(1.5)

The equation (1.5) was used in the proof of Theorem 1.6.

Definition 1.3. (Miller & Ross, 1993)

The Riemann-Liouville fractional derivative operator Dα
t of order α is defined in the

following form

Dα
t u(t) =


1

Γ(n− α)

dn

dtn

∫ t

0

(t− τ)n−α−1u(τ)dτ, n− 1 < α < n

u(n)(t), α = n ∈ N.
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Definition 1.4. (Miller & Ross, 1993)

The Caputo fractional derivative operator Dα
t of order α is defined in the following

form

Dα
t u(t) =


1

Γ(n− α)

∫ t

0

(t− τ)n−α−1u(n)(τ)dτ, n− 1 < α < n

u(n)(t), α = n ∈ N,

where Γ(·) is Gamma function.

Lemma 1.5. (Podlybuy, 1999)

Let n − 1 < α < n, n ∈ N, α ∈ R and the functions u(t) and v(t) be such that both

Dα
t u(t) and Dα

t v(t) exist. The Caputo fractional derivative is a linear operator

Dα
t (λu(t) + µv(t)) = λDα

t u(t) + µDα
t v(t),

where λ and µ are constants.

The Caputo fractional derivative is for the constant function.

Dα
t c = 0, c is a constant.

Theorem 1.6. (Syam, 2017)

The Caputo fractional derivative of the power function is given by

Dα
t t

r =


Γ(r + 1)

Γ(r − α + 1)
tr−α, n− 1 < α < n, r > n− 1, r ∈ R

0, n− 1 < α < n, r ≤ n− 1, r ∈ N

where Γ(·) denotes the Gamma function.

Proof. The proof of the second case

Dα
t t

r = 0, n− 1 < α < n, r ≤ n− 1, r ∈ N

follows the pattern of the proof of the differentiation of the constant function, since

(tr)(n) for r ≤ n− 1, r, n ∈ N.

The more interesting case is the first one. It can be proved directly, using the

definition of the Caputo fractional derivative (1.4) and the properties of Gamma func-

tion and Beta function (1.5).
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Let n− 1 < α < n, r > n− 1, r ∈ R.

Dα
t t

r =
1

Γ(n− α)

∫ t

0

(t− τ)n−α−1(τ r)(n)dτ

=
1

Γ(n− α)

∫ t

0

Γ(r + 1)

Γ(r − n+ 1)
(τ r−n)(t− τ)n−α−1dτ,

and using the substitution τ = λt, 0 ≤ λ ≤ 1

Dα
t t

r =
Γ(r + 1)

Γ(n− α)Γ(r − n+ 1)

∫ 1

0

(λt)r−n((1− λ)t)n−α−1tdλ

=
Γ(r + 1)

Γ(n− α)Γ(r − n+ 1)
tr−α

∫ 1

0

λr−n(1− λ)n−α−1dλ

=
Γ(r + 1)

Γ(n− α)Γ(r − n+ 1)
tr−αB(r − n+ 1, n− α)

=
Γ(r + 1)

Γ(n− α)Γ(r − n+ 1)
tr−αΓ(r − n+ 1)Γ(n− α)

Γ(r − α + 1)

=
Γ(r + 1)

Γ(r − α + 1)
tr−α.

Definition 1.7. Let t ≥ 0 and u(t) be a function defined on (0, t]. Then, the Riemann-

Liouville fractional integral operator of order α > 0 of a function u, is defined as

Iαu(t) =
1

Γ(α)

∫ t

0

u(τ)

(t− τ)1−α
dτ,

I0u(t) = u(t),

where Iα denotes the Riemann-Liouville fractional integral operator of order α > 0.

Theorem 1.8. The Riemann Liouville fractional integral operator of power function is

given by

Iαtr =
Γ(r + 1)

Γ(r + α + 1)
tr+α.
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Fractional logistic equation

Mathematical model of fractional calculus has been achieving great apprecia-

tion owing to its importance and applies in biology (Qureshi et al., 2019), in economy

(Almeida, Malinowska, & Monteiro, 2018), and in physic (Awadalla, & Yameni, 2018).

The fractional logistic model is one of mathematical modeling which has received the

attention of many researchers. This model can be acquired by using the Caputo frac-

tional derivative operator. The fractional logistic equation is firstly introduced by El-

Sayed, El-Mesiry and El-Saka (2007) which is in the form

Dα
t u(t) = ρu (1− u) , t > 0, ρ > 0,

with the initial condition

u(0) = u0, u0 > 0.

Later, West (2015) studied the fractional logistic equation is in the form

Dα
t u(t) = ραu (1− u) , t > 0, ρ > 0,

with the initial condition

u(0) = u0, u0 > 0.

where Dα
t denotes the Caputo fractional derivative operator with the fractional order

0 < α < 1.

The Volterra population growth model

In addition, an important model of population model was presented by Volterra

(Scudo, 1971). The model is the population growth of species within a closed system

namely the Volterra’s population growth model which defined as

dp

dt
= ap− bp2 − cp

∫ t

0

p(τ)dτ,

p(0) = p0,
(1.6)

where p(t) is the population at time t, p0 is the initial population, a > 0 is the birth rate

coefficient, b > 0 is the competition between species, c > 0 is the toxicity coefficient.

This model includes the well-known term of a logistic equation if c = 0. Furthermore, it
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includes an integral term cp
∫ t

0
p(τ)dτ that describes the accumulated toxicity produced

since time zero. The individual mortality rate is proportional to this integral, and so the

population mortality rate due to toxicity must include a factor p. The presence of the

toxic term cause the population level to decrease to a zero in the long run due to the

system being closed always.

The time and population in equation (1.6) have been scaled by introducing the

non-dimensional variables

t =
tc

b
, u =

pb

a

which provide the non-dimensional problem

κ
du

dt
= u− u2 − u

∫ t

0

u(τ)dτ,

u(0) = u0,
(1.7)

where κ = c
ab

is a prescriptive non-dimensional parameter and u(t) is the scaled pop-

ulation of the identical individuals at time t . The analytic solution of equation (1.7)

(TeBeest, 1997)

u(t) = u0exp
(
1

κ

∫ t

0

[
1− u(τ)−

∫ τ

0

u(s)ds

]
dτ

)
, (1.8)

shows that for all t, u(t) > 0 when u0 > 0.

Now, we are interest the fractional Volterra population growth model as follows

κDα
t u(t) = u(t)− u2(t)− u(t)Iαu(t), α ∈ (0, 1], (1.9)

with the initial condition

u(0) = u0, u0 > 0, (1.10)

and κ > 0 is the identical parameter of model (1.7) and u(t) is the scaled population

of identical individuals at time t. The derivative in the fractional Volterra population

growth model (1.7) is in the Caputo sense and Iαu(t) is the Riemann-Liouville frac-

tional integral operator of order α > 0.

As the fractional logistic equation and fractional Volterra population growth

model are a non-linear equation. To make it is easier to find the solution. We apply

Adomian polynomials together with the residual power series method.
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The residual power series method

In general, numerical and analytical techniques have been widely used for

solving linear or nonlinear differential equations including the fractional differential

equation. One interesting method to solve the fractional differential equations is the

residual power series method.

Recently, Abu Arqub (2013) has introduced the method for solving linear

or nonlinear differential equations that is residual power series method (RPSM). This

method is basically based on the combination of the power series and residual function.

Normally, the coefficient of power series was calculated by comparing the coefficients

of the related to terms and a recurrence relation. However, the RPSM computes the

coefficients of power series by a chain of equations of one or more variables.

Consider the fractional differential equation

Dαu(t) = R(u(t)) + F (u(t)), 0 < t < T, (1.11)

with initial condition

u(0) = u0, (1.12)

where R(u(t)) is linear term, F (u(t)) is nonlinear term and Dα
t denotes the Caputo

fractional derivative operator with the fractional order 0 < α < 1.

First, let u(t) be the solution of the fractional differential equation (1.11) as a

fractional power series about t = 0 of the form

u(t) =
∞∑
n=0

unt
nα

Γ(1 + nα)
. (1.13)

After that, we approximate u(t) in equation (1.13) by

uk(t) =
k∑

n=0

unt
nα

Γ(1 + nα)
, k = 1, 2, 3, ... (1.14)

From equation (1.14), the kth residual power series approximation uk(t) will

be obtained by computing the component u1, u2, . . . , uk. Before computing these com-

ponents, we define the residual function

Resk(t) = Dα
t uk(t)−R(uk(t))− F (uk(t)). (1.15)
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Now, we have to find the coefficients u1, u2, . . . , uk of the RPS solution (1.14) by sub-

stituting the approximation uk(t) into the equation (1.15) and then we solve equation

D
(k−1)α
t Resk(0) = 0, k = 1, 2, 3, .... (1.16)

As mentioned above, the RPS method has been used for nonlinear equation.

In this thesis, the Adomian polynomials are used for the nonlinear term in an easy way.

Therefore, we introduce the Adomian polynomials in the next section.

Adomian polynomials

Adomian polynomials decompose a function u(t) into a sum of components

u(t) =
∞∑
n=0

vn(t).

A nonlinear operator F of u(t) can be written in the form of

F (u(t)) =
∞∑
n=0

An,

whereAn are known as the Adomian polynomials determined formally from the relation

An =
1

n!

[
dn

dλn
[F (

∞∑
i=0

λivi)]

]
λ=0

.

Then, the first few polynomials are given by

A0 = F (v0),

A1 = v1F
′
(v0),

A2 = v2F
′
(v0) +

1

2!
v21F

′′
(v0),

A3 = v3F
′
(v0) + v1v2F

′′
(v0) +

1

3!
v31F

′′′
(v0),

A4 = v4F
′
(v0) +

(
1

2!
v22 + v1v3

)
F

′′
(v0) +

1

2!
v21v2F

′′′
(v0) +

1

4!
v41F

′′′
(v0).

Other polynomials can be calculated in similar manner (Wazwaz, 2000).



10

Research objectives

This research aims to

1. study the logistic equation, fractional logistic equation and the Volterra

population growth model,

2. solve the fractional logistic equation and the fractional Volterra population

growth model by using the residual power series method with Adomian

polynomials,

3. compare the approximate solution of fractional logistic equation obtained

from the residual power series method with the exact solution when the

order of derivative is one.

Scope of the study

We solve the fractional logistic equation in the form

Dα
t u(t) = ραu (1− u) , t > 0, ρ > 0,

with the initial condition

u(0) = u0,

where Dα
t denotes the Caputo fractional derivative of order 0 < α ≤ 1.

and solve the Volterra population growth model in the form

κDα
t u(t) = u(t)− u2(t)− u(t)Iαu(t), α ∈ (0, 1],

with the initial condition

u(0) = u0, u0 > 0,

where Dα
t denotes the Caputo fractional derivative of order 0 < α ≤ 1 and Iαu(t) is

the Riemann-Liouville fractional integral operator of order α > 0.
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Outline of the study

This thesis is organized as follows: A background of logistic equation, the

Volterra population growth model and the residual power series method including our

research objectives and scope of the study are introduced in Chapter 1. In Chapter 2,

we review the methods used to solve the fractional logistic equation and the Volterra

population growth model. In Chapter 3, we prove the convergence analysis and find

a numerical solution. In Chapter 4, we present some numerical examples to show the

efficiency of the proposed method and compare the results obtained from the exact

solution when the order of derivative is one. Finally, the conclusion and discussion of

this research and future research work are summarized in Chapter 5.



CHAPTER 2

LITERATURE REVIEWS

In this chapter, we review the application of the logistic differential equation

and the method to solve the fractional logistic equation including the RPS method to

solve various equation.

A review of logistic differential equation

Some literature concerned in this section are all about the logistic equation in

the various form including applying the various method to solve the logistic equation.

In 1838, Verhulst presented the model which described the self-limiting growth of a

biological population. This model can be described by the differential equation in the

form du/dt = ρ(1−u) which is called the logistic equation or logistic differential equa-

tion. This differential equation can be solved by separation of variables. The solution

is u(t) =
u0

u0 + (1− u0)e−ρt
, t ≥ 0, where u0 is the initial state at the time t = 0.

A typical application of the logistic equation is a common model of popu-

lation growth appear in the discipline of biological and social sciences presented by

Kooi, Boer, and Kooijiman (1998). In 2003, Foryś and Marciniak-Czochra presented

some approaches to tumor growth modeling using the logistic equation. The appli-

cation of the tumor growth model related to the logistic equation is extensively used

in the framework of ecology. In addition, the constant population growth rate which

does not include the limitation on food supply or spread of diseases was described by

the solution of the logistic equation (Pastijin, 2006). Not only the logistic equation

appears in field biological, social science and ecology but also this equation appear

in the field business and economics instance product diffusion and market acceptance,

an inflation rate of goods, purchasing power of peso, and employment and unemploy-

ment in the Philippines (Ramos, 2013). In addition, the researchers have studied about

logistic differential equation in many aspects. For example, Winley (2007) studied
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the logistic growth model and they have inspected three aspects related to the logistic

growth model: (a) properties of its graphical showing under various initial conditions;

(b) the relationship of the logistic model to analogous difference equation models; and

(c) the logistic differential equation is used to develop of stochastic models. Subse-

quently, Petropoulou (2010) proposed a discrete model equivalent to the logistic differ-

ential equation. The functional-analytic method is applied to find the discrete equivalent

equation which is one of the Volterra convolution types. Later, Mir and Dubeau (2016)

studied the effects of some properties of the carrying capacity on the solution of the

linear and logistic differential equations. They obtained new results on the behavior

and the asymptotic behavior of any solutions. In 2018, Windarto, Eridani and Purwati

presented a new mathematical growth model namely a WEP-modified logistic growth

model. The model was derived from a modification of the classical logistic differen-

tial equation. The WEP-modified logistic growth model described growth function of a

living organism. This model could be used as an alternative model to describe poultry

growth curve or individual growth.

The logistic equation is one of the equations that has received attention from

many researchers. Especially, the fractional logistic equation was mentioned in the

various literature. Therefore, many researchers apply various methods to solve the frac-

tional logistic equation which will be discussed in the next subsection.

A review of fractional logistic equation

Mathematical models of the fractional differential equations have been widely

applied with some engineering and industrial problems. In addition, the mathematical

models were mentioned in the field physics, chemistry, economics, biophysics, polymer

rheology, aerodynamics, signal processing, blood flow phenomena, electrodynamics,

control theory and many others (Hilfer, 2000; Kilbas, 2006; Miller & Ross; Oldham

& Spanier, 1974; Podlubny, 1999). For this reason, it leads to the interest of many

researchers.
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One of the fractional differential equations are received attention from many

researchers namely fractional logistic equation which appeared in the literature (El-

Sayed, El-Mesiry, & El-Saka, 2007), and (Momani & Qaralleh, 2007). In research of

El-Sayed et al. (2007), the authors studied the stability, existence and uniqueness of

the solution of fractional logistic equation including providing the solution of fractional

logistic equation in the form Dα
t u(t) = ρu(t)(1− u(t)) where Dα

t is Caputo fractional

differential operator with the fractional order 0 < α < 1. The PECE (Predict, Evaluate,

Correct, Evaluate) method is used to find an approximate solution to this equation. A

few years later, many researchers have applied various methods for solving fractional

logistic equation. Several numerical method are used to solve fractional logistic equa-

tions.

In 2012, a new iterative method (NIM) was interested by Bhalekar and Daftardar-

Gejji to solve the fractional logistic equation. They compared the results obtained by

a new iterative method, adomian decomposition method (ADM) (Momani & Qaralleh,

2007), and homotopy perturbation method (HAM) with exact solution. In the same

year, Sweilam, Khader and Mahdy (2012) have been utilized finite difference method

and variational iteration method to solve the fractional logistic equation and they have

been represented the numerical results. In 2013, an approximate formula of fractional

derivatives was introduced by Khader and Babatin. This formula is based on the gener-

alized Laguerre polynomials which applied to solve the fractional logistic equations. It

so-called the new spectral Laguerre collocation method. In addition, many researchers

still used other methods for solving the fractional logistic equation such as Mohamed

(2014) used the optimal homotopy analysis method (OHAM) used to find approximate

solutions of the fractional logistic equation. And in the next year, the method was pre-

sented which for solving the fractional logistic equation namely the spectral iterative

method (Shoja, Babolian & Vahidi, 2015) and the operational matrices of Bernstein

polynomials (Khan et al., 2015). In 2016, Khader applied fractional Chebyshev finite

difference method to find the solution of the fractional logistic equation and they stud-

ied the convergence analysis and estimate the error approximation formula. After that,

Vivek, Kanagarajan and Harikrishnan (2016) presented numerical solutions of the
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fractional logistic equation by fractional Eulers method and Saad and AL-Shomrani

(2016) compared the approximate analytical method consist of adomian decomposition

method (ADM), variational iteration method, homotopy analysis method (HAM) and

homotopy analysis transform method (HAM) with the exact solution of fractional lo-

gistic equation. Furthermore, in the recent years the researchers still interested in solv-

ing the fractional logistic equation by using fractional differential transform method

(FDTM) and showed the efficacy of the results (Günerhan, 2019).

As mention above, many researchers utilized various method to solve frac-

tional logistic equation which is composed of the fractional derivatives is in the Caputo

sense. In 2019, the Hadamard derivative and integral formula are used in the logis-

tic equation by Noupoue, Tangdogdu and Awadalla. They studied the existence and

uniqueness of the solution of the fractional logistic equation. In addition, they com-

puted the numerical solution of fractional logistic equation by mean of three numerical

methods consist of the Letnikov method (LM) (Petráš, 2011), the generalized Euler

method (Odibi & Momani, 2008 ), and Caputo-Fabrizio (CF) method (Atangana &

Owolabi, 2018).

Another form of the fractional logistic equation is constructed by West (2015)

which it is in formDα
t u(t) = ραu(t)(1−u(t)) whereDα

t is Caputo fractional derivative

of order 0 < α < 1. He proposed the exact solution which is in form of a series of

Mittag-Leffer functions by using the Carleman embedding technique. And the solution

is called West function. Subsequently, Area, Losada, and Nieto (2016) claimed that the

exact solution in the article of West (2015) or West function is valid only when the order

of the derivative is one. So, the West function is not an exact solution for the fractional

logistic equation. However, the West function was proven valid by D’Ovidio, Loreti,

and Arabi (2018) subject to changing the structure of the fractional logistic equation for

what they called modified fractional logistic equation .
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Therefore our purpose is to find the solution of the fractional logistic equa-

tion is in form Dα
t u(t) = ραu(t)(1− u(t)) where Dα

t is Caputo fractional derivative of

order 0 < α < 1 which introduced by West (2015). In fact, the fractional logistic equa-

tion is non-linear equation which mostly uses numerical methods to find the solution.

The Adomian polynomial is an interesting polynomial that makes solving non-linear

equations easier. So, we are interested in solving the fractional logistic equation by the

residual power series method with Adomian polynomials.

A review of the Volterra population growth model

An interesting model which received attention from many researcher is the

nonlinear Volterra population growth model. This model can explain the the population

of a species within a closed system. The literature concerned in this section are all about

the nonlinear Volterra population growth model. In 2006, Momani and Qaralleh pre-

sented efficient numerical algorithm for approximate solution of fractional population

growth model in a closed system. The algorithm is based on Adomian’s decomposition

method and the solutions are calculated in the form of a convergent series. Then the

Padé approximants are used in the analysis to capture the essential behavior of popu-

lation. Many years later, Majid and Kajani (2013) applied a multi-domain Legengre-

Gauss pseudospectral method for approximate solutions of the fractional Volterra model

for population growth of a species in a closed system. This work shows that the pro-

posed method is a very efficient and powerful tool for solving integro-differential equa-

tions of both integer and fractional orders. In 2016, Parand and Delkhosh introduced a

new numerical approximation for solving the fractional Volterra’s model for population

growth of a species in a closed system. This method is based on the generalized frac-

tional order Chebyshev orthogonal functions of first kind and the collocation method.

The effectiveness of the implementation of the fractional Legendre functions with a

pseudospectral numerical solution of a fractional population growth of species within a

closed system is presented by Hicdurmaz and Can (2017).
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A review of the RPS method

The RPS method has been widely used by many researchers for solving linear

and nonlinear differential equations of integer and fractional orders. For instance, in

2013, the RPS method was applied to solve the higher-order initial value problems

by Abu Arqub et al. (Abu Arqub, Abo-Hammour, Al-Badarneh & Momani, 2013).

Later, Kumar, A., Kumar, S. and Singh (2016) presented the approximate solution of the

Sharma-Tasso-Olever equation of fractional order by using this method. During the next

year, Tariq and Akram (2017) presented the approximate solution of the nonlinear time

space-fractional Benney-Lin by using the RPS method. In the same year, Syam (2017)

proposed a numerical solution of fractional Lienards equation by using the RPS method.

He found that the RPS method is very efficient for solving the fractional differential

equations. In addition, the RPS method was applied to solve differential equations

and fractional differential equations. For example, nonlinear boundary-layer equations

(Shatnawi, 2016), time-fractional model of Vibration equation (Jena & Chakraverty,

2019), time-fractional foam drainage equation (Alquran, 2015), time-fractional KdV

equation (Senol & Ata, 2018), time-fractional gas dynamics equation (Ramesh Rao,

2018), and so on.



CHAPTER 3

RESEARCH METHODOLOGY

In this chapter, we apply the residual power series method to solve the frac-

tional logistic equation with adomian polynomials and prove the convergence of this

method.

Some basic definition and theorem for RPS method

Definition 3.1. (Miller & Ross, 1993)

Let n be the smallest integer greater than or equal to α. The Caputo fractional derivative

of order α > 0 is defined as

Dα
t u(t) =


1

Γ(n− α)

∫ t

0

(t− τ)n−α−1u(n)(τ)dτ, n− 1 < α < n

u(n)(t), α = n ∈ N.

where Γ(·) is Gamma function.

Theorem 3.2. (Syam, 2017)

The Caputo fractional derivative of the power function is given by

Dα
t t

p =


Γ(p+ 1)

Γ(p− α+ 1)
tp−α, n− 1 < α < n, p > n− 1, p ∈ R

0, n− 1 < α < n, p ≤ n− 1, p ∈ N.

where Γ(·) is Gamma function.

Definition 3.3. (El-Ajou, Abu Arqub, Al zhour & Momani, 2013)

A power series expansion of the form
∞∑

m=0

cm(t− t0)
mα = c0 + c1(t− t0)

α + c2(t− t0)
2α + · · ·

where 0 ≤ n− 1 < α ≤ n, t ≥ t0, is called fractional power series (FPS) about t = t0.
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Theorem 3.4. (El-Ajou et al., 2013)

Suppose that f has a fractional power series represent at t = t0 of the form

f(t) =
∞∑

m=0

cm(t− t0)
mα, 0 ≤ n− 1 < α ≤ n, t0 ≤ t < t0 +R,

where R is the radius of convergence.

If Dmαf(t), m = 0, 1, 2, . . . are continuous on (t0, t0 +R), then cm = Dmαf(t0)
Γ(1+mα)

.

Definition 3.5. Let t ≥ 0 and f be a function defined on (0, t]. Then, the Riemann-

Liouville fractional integral operator of order α > 0 of a function u, is defined as

Iαu(t) =
1

Γ(α)

∫ t

0

u(τ)

(t− τ)1−α
dτ,

I0u(t) = u(t),

where Γ(·) is Gamma function.

Theorem 3.6. The Riemann Liouville fractional integral operator of power function is

given by

Iαtp =
Γ(p+ 1)

Γ(p+ α + 1)
tp+α.

The RPS method for fractional logistic equation

Consider the fractional logistic equation

Dα
t u(t) = ραu (1− u) , α ∈ (0, 1], (3.1)

with the initial condition

u(0) = u0, u0 > 0, (3.2)

and ρ > 0. The derivative in fractional logistic equation (3.1) is in the Caputo sense.

Algorithm to find the solution

According to the RPS method, let u(t) be the solution of fractional logistic

equation as a fractional power series about t = 0 of the form
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u(t) =
∞∑
n=0

unt
nα

Γ(1 + nα)
. (3.3)

The rest of our work is to find the coefficients of fractional power series.

By the initial condition (3.2), we approximate u(t) in equation (3.3) by

uk(t) = u0 +
k∑

n=1

unt
nα

Γ(1 + nα)
, k = 1, 2, 3, ... . (3.4)

To find the values of the RPS-coefficient un, we solve the equation

D
(n−1)α
t Resn(0) = 0, n = 1, 2, 3, ... , (3.5)

where Resk(t) is the kth residual function and it defined by

Resk(t) = Dα
t uk(t)− ρα

(
uk(t)− u2k(t)

)
. (3.6)

Since the fractional logistic equation (3.1) is a nonlinear fractional differential

equation in term u2(t), Adomian polynomials are implemented to calculate nonlinear

term u2(t). So, the Adomian polynomials and the residual power series method are

used together to solve the fractional logistic equation.

First, let

uk(t) =
k∑

i=0

vi, (3.7)

where v0 = u0 and

vi =
uit

iα

Γ(1 + iα)
, i = 1, 2, 3, ..., k. (3.8)

And let F (uk(t)) be the nonlinear operator

F (uk(t)) =
∞∑
n=0

An, (3.9)

where An are called Adomian polynomials determined formally from the relation

An =
1

n!

[
dn

dλn
[F (

k∑
i=0

λivi)]

]
λ=0

. (3.10)

From equation (3.7), we can rewritten the nonlinear polynomials u2k(t) as

F (uk(t)) = (v0 + v1 + v2 + v3 + · · ·+ vk)
2 =

∞∑
n=0

An.
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Adomian polynomials for F (uk(t)) = u2k(t) are given by

A0 = v20

A1 = 2v0v1

A2 = 2v0v2 + v21

A3 = 2v0v3 + 2v1v2

A4 = v22 + 2v1v3 + 2v0v4

A5 = 2v2v3 + 2v0v5 + 2v1v4

A6 = 2v0v6 + 2v1v5 + 2v2v4 + v23

A7 = 2v0v7 + 2v2v5 + 2v3v4 + 2v1v6

A8 = 2v2v6 + 2v3v5 + v24 + 2v0v8 + 2v1v7.

Other polynomials can be calculated by equation (3.10) (Fatoorehchi & Abolghasemi,

2011).

To find u1, we substitute the first RPS approximate solution

u1(t) = u0 + u1
tα

Γ(1 + α)

into equation (3.6) as follows

Res1(t) = Dα
t u1(t)− ρα (u1(t)− u21(t))

= Dα
t

(
u0 + u1

tα

Γ(1+α)

)
− ρα

(
u0 + u1

tα

Γ(1+α)

)
+ρα

(
u0 + u1

tα

Γ(1+α)

)2
= u1 − ρα

(
u0 + u1

tα

Γ(1+α)

)
+ ρα

(
u0 + u1

tα

Γ(1+α)

)2
.

Then, we solve Res1(0) = 0 to get

u1 = ρα
(
u0 − u20

)
. (3.11)

To find u2, the second RPS approximate solution is in form

u2(t) = u0 + u1
tα

Γ(1 + α)
+ u2

t2α

Γ(1 + 2α)
. (3.12)
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By using Adomian polynomials and u22(t) = F (u2(t)), we have

F (u2(t)) = (v0 + v1 + v2)
2

=
∞∑
n=0

An

= A0 + A1 + A2 + A3 + A4

= v20 + 2v0v1 + 2v0v2 + v21 + 2v1v2 + v22.

From v0 = u0 and equation (3.8), we have

u22(t) = F (u2(t)) = u20 + 2u0u1
tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
.

(3.13)

Substituting equation (3.12) and equation (3.13) into equation (3.6) as follows

Res2(t) = Dα
t u2(t)− ρα (u2(t)− u22(t))

= Dα
t

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)

)
− ρα

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)

)
+ρα

[
u20 + 2u0u1

tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2]
.

So,

Res2(t) =
(
u1 + u2

tα

Γ(1+α)

)
− ρα

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)

)
+ρα

[
u20 + 2u0u1

tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2]
.

(3.14)

Applying Dα
t on both sides of equation (3.14), we obtain

Dα
t Res2(t) = u2 − ρα

(
u1 + u2

tα

Γ(1+α)

)
+ρα

[
2u0u1 + 2u0u2

tα

Γ(1+α)
+ u21

Γ(1+2α)tα

Γ3(1+α)

+2u1u2
Γ(1+3α)t2α

Γ(1+α)Γ2(1+2α)
+ u22

Γ(1+4α)t3α

Γ2(1+2α)Γ(1+3α)

]
.

Thus, we solve Dα
t Res2(0) = 0 to get

DαRes2(0) = u2 − ρα (u1 − 2u0u1) = 0.
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We have the coefficient u2 as

u2 = ρα (u1 − 2u0u1) . (3.15)

To find u3, the third RPS approximate solution is in form

u3(t) = u0 + u1
tα

Γ(1 + α)
+ u2

t2α

Γ(1 + 2α)
+ u3

t3α

Γ(1 + 3α)
. (3.16)

By using Adomian polynomials and u23(t) = F (u3(t)), we have

F (u3(t)) = (v0 + v1 + v2 + v3)
2

=
∞∑
n=0

An

= A0 + A1 + A2 + A3 + A4 + A5 + A6

= v20 + 2v0v1 + 2v0v2 + v21 ++2v0v3 + 2v1v2 + v22 + 2v1v3

+2v2v3 + v23.

From v0 = u0 and equation (3.8), we have

u23(t) = F (u3(t))

= u20 + 2u0u1
tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u0u3

t3α

Γ(1+3α)
+ 2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
+2u1u3

t4α

Γ(1+α)Γ(1+3α)
+ 2u2u3

t5α

Γ(1+2α)Γ(1+3α)
+
(
u3

t3α

Γ(1+3α)

)2
.

(3.17)

Substituting equation (3.16) and equation (3.17) into equation (3.6) as follows

Res3(t) = Dα
t u3(t)− ρα (u3(t)− u23(t))

= Dα
t

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)

)
−ρα

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)

)
+ρα

[
u20 + 2u0u1

tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u0u3

t3α

Γ(1+3α)
+ 2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
+2u1u3

t4α

Γ(1+α)Γ(1+3α)
+ 2u2u3

t5α

Γ(1+2α)Γ(1+3α)
+
(
u3

t3α

Γ(1+3α)

)2]
.
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So,

Res3(t) =
(
u1 + u2

tα

Γ(1+α)
+ u3

t2α

Γ(1+2α)

)
−ρα

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)

)
+ρα

[
u20 + 2u0u1

tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u0u3

t3α

Γ(1+3α)
+ 2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
+2u1u3

t4α

Γ(1+α)Γ(1+3α)
+ 2u2u3

t5α

Γ(1+2α)Γ(1+3α)
+
(
u3

t3α

Γ(1+3α)

)2]
.

(3.18)

Applying D2α
t on both sides of equation (3.18), we get

D2α
t Res3(t) = u3 − ρα

(
u2 + u3

tα

Γ(1+α)

)
+ρα

[
2u0u2 + u21

Γ(1+2α)
Γ2(1+α)

+ 2u0u3
tα

Γ(1+α)

+2u1u2
Γ(1+3α)tα

Γ2(1+α)Γ(1+2α)
+ u22

Γ(1+4α)t2α

Γ3(1+2α)
+ 2u1u3

Γ(1+4α)t2α

Γ2(1+α)Γ(1+2α)Γ(1+3α)

+u2u3
Γ(1+5α)t3α

Γ(1+2α)Γ2(1+3α)
+ u23

Γ(1+6α)t4α

Γ2(1+3α)Γ(1+4α)

]
.

Then, we solve D2α
t Res3(0) = 0 to get

D2α
t Res3(0) = u3 − ραu2 + ρα

(
2u0u2 + u21

Γ(1 + 2α)

Γ2(1 + α)

)
= 0.

We have the coefficient u3 as

u3 = ρα
(
u2 − 2u0u2 − u21

Γ(1 + 2α)

Γ2(1 + α)

)
. (3.19)

To find u4, the fourth RPS approximate solution is in form

u4(t) = u0 + u1
tα

Γ(1 + α)
+ u2

t2α

Γ(1 + 2α)
+ u3

t3α

Γ(1 + 3α)
+ u4

t4α

Γ(1 + 4α)
. (3.20)

By using Adomian polynomials and u24(t) = F (u4(t)), we have

F (u4(t)) = (v0 + v1 + v2 + v3 + v4)
2

=
∞∑
n=0

An

= A0 + A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8

= v20 + 2v0v1 + 2v0v2 + v21 ++2v0v3 + 2v1v2 + v22 + 2v1v3 + 2v0v4

+2v2v3 + 2v1v4 ++2v2v4 + v23 + 2v3v4 + v24.
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From v0 = u0 and equation (3.8), we have

u24(t) = F (u4(t))

= u20 + 2u0u1
tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u0u3

t3α

Γ(1+3α)
+ 2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
+2u1u3

t4α

Γ(1+α)Γ(1+3α)
+ 2u0u4

t4α

Γ(1+4α)
+ 2u2u3

t5α

Γ(1+2α)Γ(1+3α)

+2u1u4
t5α

Γ(1+α)Γ(1+4α)
+ 2u2u4

t6α

Γ(1+2α)Γ(1+4α)
+
(
u3

t3α

Γ(1+3α)

)2
+2u3u4

t7α

Γ(1+3α)Γ(1+4α)
+
(
u4

t4α

Γ(1+4α)

)2
.

(3.21)

Substituting equation (3.20) and equation (3.21) into equation (3.6) as follows

Res4(t) = Dα
t u4(t)− ρα (u4(t)− u24(t))

= Dα
t

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)
+ u4

t4α

Γ(1+4α)

)
−ρα

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)
+ u4

t4α

Γ(1+4α)

)
+ρα

[
u20 + 2u0u1

tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u0u3

t3α

Γ(1+3α)
+ 2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
+2u1u3

t4α

Γ(1+α)Γ(1+3α)
+ 2u0u4

t4α

Γ(1+4α)
+ 2u2u3

t5α

Γ(1+2α)Γ(1+3α)

+2u1u4
t5α

Γ(1+α)Γ(1+4α)
+ 2u2u4

t6α

Γ(1+2α)Γ(1+4α)
+
(
u3

t3α

Γ(1+3α)

)2
+2u3u4

t7α

Γ(1+3α)Γ(1+4α)
+
(
u4

t4α

Γ(1+4α)

)2]
.

So,

Res4(t) = u1 + u2
tα

Γ(1+α)
+ u3

t2α

Γ(1+2α)
+ u4

t3α

Γ(1+3α)

−ρα
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)
+ u4

t4α

Γ(1+4α)

)
+ρα

[
u20 + 2u0u1

tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u0u3

t3α

Γ(1+3α)
+ 2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
+2u1u3

t4α

Γ(1+α)Γ(1+3α)
+ 2u0u4

t4α

Γ(1+4α)
+ 2u2u3

t5α

Γ(1+2α)Γ(1+3α)

+2u1u4
t5α

Γ(1+α)Γ(1+4α)
+
(
u3

t3α

Γ(1+3α)

)2
+ 2u3u4

t7α

Γ(1+3α)Γ(1+4α)

+
(
u4

t4α

Γ(1+4α)

)2]
.

(3.22)
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Applying D3α
t on both sides of equation (3.22), we get

D3α
t Res4(t) = u4 − ρα

(
u3 + u4

tα

Γ(1+α)

)
ρα
[
2u0u3 + 2u1u2

Γ(1+3α)
Γ(1+α)Γ(1+2α)

+ u22
Γ(1+4α)tα

Γ(1+α)Γ2(1+2α)

2u1u3
Γ(1+4α)tα

Γ2(1+α)Γ(1+3α)
+ u0u4

tα

Γ(1+α)
+ 2u2u3

Γ(1+5α)t2α

Γ2(1+2α)Γ(1+3α)

2u1u4
Γ(1+5α)t2α

Γ(1+α)Γ(1+2α)Γ(1+4α)
+ u23

Γ(1+6α)t3α

Γ3(1+3α)
+ 2u3u4

Γ(1+7α)t4α

Γ3(1+3α)Γ2(1+4α)

+u24
Γ(1+8α)t5α

Γ2(1+4α)Γ(1+5α)

]
.

Thus, we solve D3α
t Res4(0) = 0 to get

D3α
t Res4(0) = u4 − ραu3 + ρα

[
2u0u3 + 2u1u2

Γ(1 + 3α)

Γ(1 + α)Γ(1 + 2α)

]
= 0.

We have the coefficient u4 as

u4 = ρα
(
u3 − 2u0u3 − u1u2

Γ(1 + 3α)

Γ(1 + α)Γ(1 + 2α)

)
. (3.23)

Using a similar argument, to find uk in equation (3.4).

The kth RPS approximate solution is in form

uk(t) = u0 +
k∑

n=1

unt
nα

Γ(1 + nα)
.

Then,

u2k(t) =
k∑

n=0

(
k∑

i=0

uiun−i

Γ(1 + iα)Γ(1 + (n− i)α)

)
tnα

+
k∑

n=1

(
k∑

i=n

uiuk+n−i

Γ(1 + iα)Γ(1 + (k + n− i)α)

)
t(k+n)α.

(3.24)

We derive the kth residual function as

Resk(t) = Dα
t uk(t)− ρα (uk(t)− u2k(t))

= Dα
t

(
u0 +

k∑
n=1

unt
nα

Γ(1 + nα)

)
− ρα

(
k∑

n=0

unt
nα

Γ(1 + nα)

)

+ρα

(
k∑

n=0

(
k∑

i=0

uiun−i

Γ(1 + iα)Γ(1 + (n− i)α)

)
tnα

+
k∑

n=1

(
k∑

i=n

uiuk+n−i

Γ(1 + iα)Γ(1 + (k + n− i)α)

)
t(k+n)α

)
.
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So,

Resk(t) =
k∑

n=1

unt
(n−1)α

Γ(1 + (n− 1)α)
− ρα

(
k∑

n=0

unt
nα

Γ(1 + nα)

)

+ρα

(
k∑

n=0

(
k∑

i=0

uiun−i

Γ(1 + iα)Γ(1 + (n− i)α)

)
tnα

+
k∑

n=1

(
k∑

i=n

uiuk+n−i

Γ(1 + iα)Γ(1 + (k + n− i)α)

)
t(k+n)α

)
.

(3.25)

Now, we apply the operator D(k−1)α
t on both sides of equation (3.25) becomes

D
(k−1)α
t Resk(t) = uk − ρα

(
uk−1 +

ukt
α

Γ(1+α)

)
+ρα

(
k−1∑
i=0

uiuk−1−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

+
k∑

i=0

uiuk−iΓ(1 + kα)

Γ(1 + iα)Γ(1 + (k − i)α)Γ(1 + α)
tα

+
k∑

n=1

(
k∑

i=n

uiuk+n−iΓ(1 + (k + n)α)

Γ(1 + iα)Γ(1 + (k + n− i)α)Γ(1 + (n+ 1)α)

)
t(n+1)α

)
.

Solving the equation D(k−1)αResk(0) = 0, we have

D
(k−1)α
t Resk(0) = uk − ραuk−1 + ρα

(
k−1∑
i=0

uiuk−1−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

)
= 0.

The coefficient uk is expressed as follows

uk = ρα

(
uk−1 −

k−1∑
i=0

uiuk−1−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

)
. (3.26)

Convergence analysis

In this section, we prove the convergence of the residual power series method

by using Lemma 3.7.

Lemma 3.7. (El-Ajou et al., 2013)

The classical power series (CPS)
∑∞

n=0 unt
n, −∞ < t < ∞, has a radius of con-

vergence R if and only if the fractional power series (FPS)
∑∞

n=0 unt
nα, t ≥ 0, has a

radius of convergence R
1
α .
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Proof. Consider the CPS
∞∑
n=0

unt
n. If we make the change of variable t = xα, x ≥ 0,

then the CPS becomes
∞∑
n=0

unx
nα

This series converges for 0 ≤ x < R, that is 0 ≤ x < R
1
α ,

and so the FPS
∞∑
n=0

unt
nα has radius of convergence R

1
α .

Conversely, if we make the change of variable t = x
1
α , x ≥ 0,

then the FPS
∞∑
n=0

unt
nα becomes

∞∑
n=0

unt
n, x ≥ 0.

In fact, this series converge for 0 ≤ x
1
α < R

1
α that is for 0 ≤ x < R.

Since the two series
∞∑
n=0

unt
n, x ≥ 0 and

∞∑
n=0

unt
n, −∞ < x < ∞ have the same

radius of convergence R = lim
n→∞

∣∣∣∣ unun+1

∣∣∣∣, the radius of convergence for the CPS
∞∑
n=0

unt
n,

−∞ < x <∞ is R, so the proof of this lemma is complete.

Theorem 3.8. The fractional power series solution of fractional logistic equation (3.1):

u(t) =
∞∑
n=0

unt
nα

Γ(1 + nα)
,

where the coefficients are defined in equation (3.26) has a positive radius of conver-

gence.

Proof. Since the coefficient uk is

uk = ρα

(
uk−1 −

k−1∑
i=0

uiuk−1−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

)
,

we can see that

|uk|
Γ(1 + kα)

=

∣∣∣∣∣ρα
(
uk−1 −

k−1∑
i=0

uiuk−1−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

)∣∣∣∣∣
Γ(1 + kα)
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|uk|
Γ(1 + kα)

≤ |ρα|


|uk−1|+

∣∣∣∣∣
k−1∑
i=0

uiuk−1−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

∣∣∣∣∣
Γ(1 + kα)


≤ |ρα|

(
|uk−1|

Γ(1+kα)
+

k−1∑
i=0

|ui| |uk−1−i|Γ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)Γ(1 + kα)

)

≤ |ρα|

 |uk−1|
Γ(1+kα)

+ max
0≤i≤k−1

k

{
Γ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)Γ(1 + kα)

} k−1∑
i=0

|ui| |uk−1−i|


= A |uk−1|+B

k−1∑
i=0

|ui| |uk−1−i|

where

A =
|ρα|

Γ(1 + kα)
, B = max

0≤i≤k−1

k

{
Γ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)Γ(1 + kα)

}
|ρα|.

Let

g(t) =
∞∑
k=0

akt
k (3.27)

where a0 = |u0| and

ak = A ak−1 +B
k−1∑
i=0

aiak−1−i, k = 1, 2, ... (3.28)

be the classical power series.

Thus,

ω = g(t) = a0 + t

∞∑
k=0

ak+1t
k

= a0 + t

(
∞∑
k=0

(
Aak +B

k∑
i=0

aiak−i

)
tk

)

= a0 + t

(
A

∞∑
k=0

akt
k +B

∞∑
k=0

(
k∑

i=0

aiak−i

)
tk

)
.

Let

G(t, ω) = ω − a0 − t
(
Aω +Bω2

)
. (3.29)
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Then

Gω(t, ω) = 1− t (A+ 2Bω) .

Regarding at point (0, a0), the function G(t, ω) is 0 and the partial deriva-

tive of the function G(t, ω) with respect to ω is 1. We can see that G(t, ω) is an an-

alytic function, so G(t, ω) has continuous derivatives. By implicit function theorem

(Rudin, 2004), there is a neighborhood of (0, a0) so that whenever t is sufficiently close

to 0 there is a unique ω so that G(t, ω) = 0. Then, g(t) is an analytic function in the

neighborhood of the point (0, a0) of the (t, ω)-plane with a positive radius of conver-

gence. From Lemma 3.7, the series in equation (3.3) converges.

The RPS method for fractional Volterra population growth model

Consider the fractional population growth model

κDα
t u(t) = u(t)− u2(t)− u(t)Iαu(t), α ∈ (0, 1], (3.30)

with the initial condition

u(0) = u0, u0 > 0, (3.31)

and κ > 0 is a prescribed non-dimensional parameter and u(t) is the scaled population

of identical individuals at time t. The derivative in fractional population growth model

(3.30) is in the Caputo sense and Iαu(t) is the Riemann-Liouville fractional integral

operator of order α > 0.

Algorithm to find the solution

According to the RPS method, let u(t) be the solution of fractional population

growth model as a fractional power series about t = 0 of the form

u(t) =
∞∑
n=0

unt
nα

Γ(1 + nα)
. (3.32)

The rest of our work to find the coefficients of fractional power series.

By the initial condition (3.31), we approximate u(t) in equation (3.32) by

uk(t) = u0 +
k∑

n=1

unt
nα

Γ(1 + nα)
, k = 1, 2, 3, ... . (3.33)
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To find the values of the RPS-coefficient un, we solve the equation

D
(n−1)α
t Resn(0) = 0, n = 1, 2, 3, ... , (3.34)

where Resk(t) is the kth residual function and it defined by

Resk(t) = κDα
t uk(t)− uk(t) + u2k(t) + uk(t)I

αuk(t). (3.35)

Likewise, since the fractional population growth model (3.31) is a nonlinear

fractional differential equation in term u2(t), Adomian polynomials are implemented

to calculate nonlinear term u2(t). So, the Adomian polynomials and the residual power

series method are used together to solve the fractional logistic equation.

First, let

uk(t) =
k∑

i=0

vi, (3.36)

where v0 = u0 and

vi =
uit

iα

Γ(1 + iα)
, i = 1, 2, 3, ..., k. (3.37)

And let F (uk(t)) be the nonlinear operator

F (uk(t)) =
∞∑
n=0

An, (3.38)

where An are called Adomian polynomials determined formally from the relation

An =
1

n!

[
dn

dλn
[F (

k∑
i=0

λivi)]

]
λ=0

. (3.39)

From equation (3.36), we can rewritten the nonlinear polynomials u2k(t) as

F (uk(t)) = (v0 + v1 + v2 + v3 + · · ·+ vk)
2 =

∞∑
n=0

An.
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Adomian polynomials for F (uk(t)) = u2k(t) given by

A0 = v20

A1 = 2v0v1

A2 = 2v0v2 + v21

A3 = 2v0v3 + 2v1v2

A4 = v22 + 2v1v3 + 2v0v4

A5 = 2v2v3 + 2v0v5 + 2v1v4

A6 = 2v0v6 + 2v1v5 + 2v2v4 + v23

A7 = 2v0v7 + 2v2v5 + 2v3v4 + 2v1v6

A8 = 2v2v6 + 2v3v5 + v24 + 2v0v8 + 2v1v7.

Other polynomials can be calculated by equation (3.39) (Fatoorehchi & Abolghasemi,

2011).

To find u1, we substitute the first RPS approximate solution

u1(t) = u0 + u1
tα

Γ(1 + α)

into equation (3.35) as follows

Res1(t) = κDα
t u1(t)− u1(t) + u21(t) + u1(t)I

α(u1(t))

= κDα
t

(
u0 + u1

tα

Γ(1+α)

)
−
(
u0 + u1

tα

Γ(1+α)

)
+
(
u0 + u1

tα

Γ(1+α)

)2
+
(
u0 + u1

tα

Γ(1+α)

)
Iα(u0 + u1

tα

Γ(1+α)
)

= κu1 −
(
u0 + u1

tα

Γ(1+α)

)
+
(
u0 + u1

tα

Γ(1+α)

)2
+
(
u0 + u1

tα

Γ(1+α)

)(
u0

tα

Γ(1+α)
+ u1

t2α

Γ(1+2α)

)
.

Then, we solve Res1(0) = 0 to get

u1 =
1

κ

[
u0 − u20

]
. (3.40)

To find u2, the second RPS approximate solution is in form

u2(t) = u0 + u1
tα

Γ(1 + α)
+ u2

t2α

Γ(1 + 2α)
. (3.41)
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By using Adomian polynomials and u22(t) = F (u2(t)), we have

F (u2(t)) = (v0 + v1 + v2)
2

=
∞∑
n=0

An

= A0 + A1 + A2 + A3 + A4

= v20 + 2v0v1 + 2v0v2 + v21 + 2v1v2 + v22.

From v0 = u0 and equation (3.37), we have

u22(t) = F (u2(t)) = u20 + 2u0u1
tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
.

(3.42)

Substituting equation (3.41) and equation (3.42) into equation (3.35) as follows

Res2(t) = κDα
t u2(t)− u2(t) + u22(t) + u2(t)I

α(u2(t))

= κDα
t

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)

)
−
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)

)
+

[
u20 + 2u0u1

tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2]
+
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)

)
Iα
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)

)
= κDα

t

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)

)
−
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)

)
+

[
u20 + 2u0u1

tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2]
+
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)

) [
u0

tα

Γ(1+α)
+ u1

t2α

Γ(1+2α)
+ u2

t3α

Γ(1+3α)

]
So,

Res2(t) = κ
(
u1 + u2

tα

Γ(1+α)

)
−
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)

)
+

[
u20 + 2u0u1

tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2]
+
[(

u2
0

Γ(1+α)

)
tα +

(
u0u1

Γ2(1+α)
+ u0u1

Γ(1+2α)

)
t2α

+
(

u0u2

Γ(1+α)Γ(1+2α)
+

u2
1

Γ(1+α)Γ(1+2α)
+ u0u2

Γ(1+3α)

)
t3α

+
(

u1u2

Γ2(1+2α)
+ u1u2

Γ(1+α)Γ(1+3α)

)
t4α +

(
u2
2

Γ(1+2α)Γ(1+3α)

)
t5α
]
.

(3.43)
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Applying Dα
t on both sides of equation (3.43), we obtain

Dα
t Res2(t) = κu2 −

(
u1 + u2

tα

Γ(1+α)

)
+
[
2u0u1 + 2u0u2

tα

Γ(1+α)
+ u21

Γ(1+2α)tα

Γ3(1+α)

+2u1u2
Γ(1+3α)t2α

Γ(1+α)Γ2(1+2α)
+ u22

Γ(1+4α)t3α

Γ2(1+2α)Γ(1+3α)

]
+
[
u20 +

(
u0u1

Γ2(1+α)
+ u0u1

Γ(1+2α)

)
Γ(1+2α)tα

Γ(1+α)

+
(

u0u2

Γ(1+α)Γ(1+2α)
+

u2
1

Γ(1+α)Γ(1+2α)
+ u0u2

Γ(1+3α)

)
Γ(1+3α)t2α

Γ(1+2α)

+
(

u1u2

Γ2(1+2α)
+ u1u2

Γ(1+α)Γ(1+3α)

)
Γ(1+4α)t3α

Γ(1+3α)
+
(

u2
2

Γ(1+2α)Γ(1+3α)

)
Γ(1+5α)t4α

Γ(1+4α)

]
.

Thus, we solve Dα
t Res2(0) = 0 to get

Dα
t Res2(0) = κu2 − u1 + 2u0u1 + u20 = 0.

We have the coefficient u2 as

u2 =
1

κ

[
u1 − 2u0u1 − u20

]
. (3.44)

To find u3, the third RPS approximate solution is in form

u3(t) = u0 + u1
tα

Γ(1 + α)
+ u2

t2α

Γ(1 + 2α)
+ u3

t3α

Γ(1 + 3α)
. (3.45)

By using Adomian polynomials and u23(t) = F (u3(t)), we have

F (u3(t)) = (v0 + v1 + v2 + v3)
2

=
∞∑
n=0

An

= A0 + A1 + A2 + A3 + A4 + A5 + A6

= v20 + 2v0v1 + 2v0v2 + v21 ++2v0v3 + 2v1v2 + v22 + 2v1v3

+2v2v3 + v23.
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From v0 = u0 and equation (3.37), we have

u23(t) = F (u3(t))

= u20 + 2u0u1
tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u0u3

t3α

Γ(1+3α)
+ 2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
+2u1u3

t4α

Γ(1+α)Γ(1+3α)
+ 2u2u3

t5α

Γ(1+2α)Γ(1+3α)
+
(
u3

t3α

Γ(1+3α)

)2
.

(3.46)

Substituting equation (3.45) and equation (3.46) into equation (3.35) as follows

Res3(t) = κDα
t u3(t)− u3(t) + u23(t) + u3(t)I

α(u3(t))

= κDα
t

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)

)
−
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)

)
+

[
u20 + 2u0u1

tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u0u3

t3α

Γ(1+3α)
+ 2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
+2u1u3

t4α

Γ(1+α)Γ(1+3α)
+ 2u2u3

t5α

Γ(1+2α)Γ(1+3α)
+
(
u3

t3α

Γ(1+3α)

)2]
+
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)

)
×Iα

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)

)
= κDα

t

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)

)
−
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)

)
+

[
u20 + 2u0u1

tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u0u3

t3α

Γ(1+3α)
+ 2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
+2u1u3

t4α

Γ(1+α)Γ(1+3α)
+ 2u2u3

t5α

Γ(1+2α)Γ(1+3α)
+
(
u3

t3α

Γ(1+3α)

)2]
+
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)

)
×
[
u0

tα

Γ(1+α)
+ u1

t2α

Γ(1+2α)
+ u2

t3α

Γ(1+3α)
+ u3

t4α

Γ(1+4α)

]
.
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So,

Res3(t) = κ
(
u1 + u2

tα

Γ(1+α)
+ u3

t2α

Γ(1+2α)

)
−
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)

)
+

[
u20 + 2u0u1

tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u0u3

t3α

Γ(1+3α)
+ 2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
+2u1u3

t4α

Γ(1+α)Γ(1+3α)
+ 2u2u3

t5α

Γ(1+2α)Γ(1+3α)
+
(
u3

t3α

Γ(1+3α)

)2]
+
[(

u2
0

Γ(1+α)

)
tα +

(
u0u1

Γ2(1+α)
+ u0u1

Γ(1+2α)

)
t2α

+
(

u0u2

Γ(1+α)Γ(1+2α)
+

u2
1

Γ(1+α)Γ(1+2α)
+ u0u2

Γ(1+3α)

)
t3α

+
(

u0u3

Γ(1+α)Γ(1+3α)
+ u1u2

Γ2(1+2α)
+ u1u2

Γ(1+α)Γ(1+3α)
+ u0u3

Γ(1+4α)

)
t4α

+
(

u1u3

Γ(1+α)Γ(1+4α)
+

u2
2

Γ(1+2α)Γ(1+3α)
+ u1u3

Γ(1+2α)Γ(1+3α)

)
t5α

+
(

u2u3

Γ(1+2α)Γ(1+4α)
+ u2u3

Γ2(1+3α)

)
t6α +

(
u2
3

Γ(1+3α)Γ(1+4α)

)
t7α
]
.

(3.47)

Applying D2α
t on both sides of equation (3.47), we get

D2α
t Res3(t) = κu3 −

(
u2 + u3

tα

Γ(1+α)

)
+
[
2u0u2 + u21

Γ(1+2α)
Γ2(1+α)

+ 2u0u3
tα

Γ(1+α)

+2u1u2
Γ(1+3α)tα

Γ2(1+α)Γ(1+2α)
+ u22

Γ(1+4α)t2α

Γ3(1+2α)
+ 2u1u3

Γ(1+4α)t2α

Γ2(1+α)Γ(1+2α)Γ(1+3α)

+u2u3
Γ(1+5α)t3α

Γ(1+2α)Γ2(1+3α)
+ u23

Γ(1+6α)t4α

Γ2(1+3α)Γ(1+4α)

]
+
[(

u0u1

Γ2(1+α)
+ u0u1

Γ(1+2α)

)
Γ(1+2α)

Γ(1)

+
(

u0u2

Γ(1+α)Γ(1+2α)
+

u2
1

Γ(1+α)Γ(1+2α)
+ u0u2

Γ(1+3α)

)
Γ(1+3α)
Γ(1+α)

tα

+
(

u0u3

Γ(1+α)Γ(1+3α)
+ u1u2

Γ2(1+2α)
+ u1u2

Γ(1+α)Γ(1+3α)
+ u0u3

Γ(1+4α)

)
Γ(1+4α)
Γ(1+2α)

t2α

+
(

u1u3

Γ(1+α)Γ(1+4α)
+

u2
2

Γ(1+2α)Γ(1+3α)
+ u1u3

Γ(1+2α)Γ(1+3α)

)
Γ(1+5α)
Γ(1+3α)

t3α

+
(

u2u3

Γ(1+2α)Γ(1+4α)
+ u2u3

Γ2(1+3α)

)
Γ(1+6α)
Γ(1+4α)

t4α +
(

u2
3

Γ(1+3α)Γ(1+4α)

)
Γ(1+7α)
Γ(1+5α)

t5α
]
.

Then, we solve D2α
t Res3(0) = 0 to get

D2α
t Res3(0) = κu3−u2+

(
2u0u2 + u21

Γ(1 + 2α)

Γ2(1 + α)

)
+

(
u0u1Γ(1 + 2α)

Γ2(1 + α)
+ u0u1

)
= 0.

We have the coefficient u3 as

u3 =
1

κ

[
u2 −

(
2u0u2 + u21

Γ(1 + 2α)

Γ2(1 + α)

)
−
(
u0u1Γ(1 + 2α)

Γ2(1 + α)
+ u0u1

)]
. (3.48)
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To find u4, the fourth RPS approximate solution is in form

u4(t) = u0 + u1
tα

Γ(1 + α)
+ u2

t2α

Γ(1 + 2α)
+ u3

t3α

Γ(1 + 3α)
+ u4

t4α

Γ(1 + 4α)
. (3.49)

By using Adomian polynomials and u24(t) = F (u4(t)), we have

F (u4(t)) = (v0 + v1 + v2 + v3 + v4)
2

=
∞∑
n=0

An

= A0 + A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8

= v20 + 2v0v1 + 2v0v2 + v21 ++2v0v3 + 2v1v2 + v22 + 2v1v3 + 2v0v4

+2v2v3 + 2v1v4 ++2v2v4 + v23 + 2v3v4 + v24.

From v0 = u0 and equation (3.37), we have

u24(t) = F (u4(t))

= u20 + 2u0u1
tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u0u3

t3α

Γ(1+3α)
+ 2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
+2u1u3

t4α

Γ(1+α)Γ(1+3α)
+ 2u0u4

t4α

Γ(1+4α)
+ 2u2u3

t5α

Γ(1+2α)Γ(1+3α)

+2u1u4
t5α

Γ(1+α)Γ(1+4α)
+ 2u2u4

t6α

Γ(1+2α)Γ(1+4α)
+
(
u3

t3α

Γ(1+3α)

)2
+2u3u4

t7α

Γ(1+3α)Γ(1+4α)
+
(
u4

t4α

Γ(1+4α)

)2
.

(3.50)
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Substituting equation (3.49) and equation (3.50) into equation (3.35) as follows

Res4(t) = κDα
t u4(t)− u4(t) + u24(t) + u4(t)I

α(u4(t))

= κDα
t

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)
+ u4

t4α

Γ(1+4α)

)
−
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)
+ u4

t4α

Γ(1+4α)

)
+

[
u20 + 2u0u1

tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u0u3

t3α

Γ(1+3α)
+ 2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
+2u1u3

t4α

Γ(1+α)Γ(1+3α)
+ 2u0u4

t4α

Γ(1+4α)
+ 2u2u3

t5α

Γ(1+2α)Γ(1+3α)

+2u1u4
t5α

Γ(1+α)Γ(1+4α)
+ 2u2u4

t6α

Γ(1+2α)Γ(1+4α)
+
(
u3

t3α

Γ(1+3α)

)2
+2u3u4

t7α

Γ(1+3α)Γ(1+4α)
+
(
u4

t4α

Γ(1+4α)

)2]
+
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)
+ u4

t4α

Γ(1+4α)

)
×Iα

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)
+ u4

t4α

Γ(1+4α)

)
= κDα

t

(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)
+ u4

t4α

Γ(1+4α)

)
−
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)
+ u4

t4α

Γ(1+4α)

)
+

[
u20 + 2u0u1

tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u0u3

t3α

Γ(1+3α)
+ 2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
+2u1u3

t4α

Γ(1+α)Γ(1+3α)
+ 2u0u4

t4α

Γ(1+4α)
+ 2u2u3

t5α

Γ(1+2α)Γ(1+3α)

+2u1u4
t5α

Γ(1+α)Γ(1+4α)
+ 2u2u4

t6α

Γ(1+2α)Γ(1+4α)
+
(
u3

t3α

Γ(1+3α)

)2
+2u3u4

t7α

Γ(1+3α)Γ(1+4α)
+
(
u4

t4α

Γ(1+4α)

)2]
+
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)
+ u4

t4α

Γ(1+4α)

)
×
[
u0

tα

Γ(1+α)
+ u1

t2α

Γ(1+2α)
+ u2

t3α

Γ(1+3α)
+ u3

t4α

Γ(1+4α)
+ u4

t5α

Γ(1+5α)

]
.
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So,

Res4(t) = κ
(
u1 + u2

tα

Γ(1+α)
+ u3

t2α

Γ(1+2α)
+ u4

t3α

Γ(1+3α)

)
−
(
u0 + u1

tα

Γ(1+α)
+ u2

t2α

Γ(1+2α)
+ u3

t3α

Γ(1+3α)
+ u4

t4α

Γ(1+4α)

)
+

[
u20 + 2u0u1

tα

Γ(1+α)
+ 2u0u2

t2α

Γ(1+2α)
+
(
u1

tα

Γ(1+α)

)2
+2u0u3

t3α

Γ(1+3α)
+ 2u1u2

t3α

Γ(1+α)Γ(1+2α)
+
(
u2

t2α

Γ(1+2α)

)2
+2u1u3

t4α

Γ(1+α)Γ(1+3α)
+ 2u0u4

t4α

Γ(1+4α)
+ 2u2u3

t5α

Γ(1+2α)Γ(1+3α)

+2u1u4
t5α

Γ(1+α)Γ(1+4α)
+
(
u3

t3α

Γ(1+3α)

)2
+ 2u3u4

t7α

Γ(1+3α)Γ(1+4α)

+
(
u4

t4α

Γ(1+4α)

)2]
+
[(

u2
0

Γ(1+α)

)
tα +

(
u0u1

Γ(1+2α)
+ u0u1

Γ2(1+α)

)
t2α

+
(

u0u2

Γ(1+3α)
+

u2
1

Γ(1+α)Γ(1+2α)
+ u0u2

Γ(1+α)Γ(1+2α)

)
t3α

+
(

u0u3

Γ(1+4α)
+ u1u2

Γ(1+α)Γ(1+3α)
+ u1u2

Γ2(1+2α)
+ u0u3

Γ(1+α)Γ(1+3α)

)
t4α

+
(

u0u4

Γ(1+5α)
+ u1u3

Γ(1+α)Γ(1+4α)
+

u2
2

Γ(1+2α)Γ(1+3α)

+ u1u3

Γ(1+2α)Γ(1+3α)
+ u0u4

Γ(1+α)Γ(1+4α)

)
t5α

+
(

u1u4

Γ(1+2α)Γ(1+4α)
+ u2u3

Γ2(1+3α)
+ u2u3

Γ(1+2α)Γ(1+4α)
+ u1u4

Γ(1+α)Γ(1+5α)

)
t6α

+
(

u2u4

Γ(1+3α)Γ(1+4α)
+

u2
3

Γ(1+3α)Γ(1+4α)
+ u2u4

Γ(1+2α)Γ(1+5α)

)
t7α

+
(

u3u4

Γ2(1+4α)
+ u3u4

Γ(1+3α)Γ(1+5α)

)
t8α +

(
u2
4

Γ(1+4α)Γ(1+5α)

)
t9α
]
.

(3.51)

Applying D3α
t on both sides of equation (3.51), we get

D3α
t Res4(t) = κu4 −

(
u3 + u4

tα

Γ(1+α)

)
+
[
2u0u3 + 2u1u2

Γ(1+3α)
Γ(1+α)Γ(1+2α)

+ u22
Γ(1+4α)tα

Γ(1+α)Γ2(1+2α)

2u1u3
Γ(1+4α)tα

Γ2(1+α)Γ(1+3α)
+ u0u4

tα

Γ(1+α)
+ 2u2u3

Γ(1+5α)t2α

Γ2(1+2α)Γ(1+3α)

2u1u4
Γ(1+5α)t2α

Γ(1+α)Γ(1+2α)Γ(1+4α)
+ u23

Γ(1+6α)t3α

Γ3(1+3α)
+ 2u3u4

Γ(1+7α)t4α

Γ3(1+3α)Γ2(1+4α)

+u24
Γ(1+8α)t5α

Γ2(1+4α)Γ(1+5α)

]
+
[(

u0u2

Γ(1+3α)
+

u2
1

Γ(1+α)Γ(1+2α)
+ u0u2

Γ(1+α)Γ(1+2α)

)
Γ(1+3α)

Γ(1)

+
(

u0u3

Γ(1+4α)
+ u1u2

Γ(1+α)Γ(1+3α)
+ u1u2

Γ2(1+2α)
+ u0u3

Γ(1+α)Γ(1+3α)

)
Γ(1+4α)
Γ(1+α)

tα

+
(

u0u4

Γ(1+5α)
+ u1u3

Γ(1+α)Γ(1+4α)
+

u2
2

Γ(1+2α)Γ(1+3α)
+ u1u3

Γ(1+2α)Γ(1+3α)

+ u0u4

Γ(1+α)Γ(1+4α)

)
Γ(1+5α)
Γ(1+2α)

t2α

+
(

u1u4

Γ(1+2α)Γ(1+4α)
+ u2u3

Γ2(1+3α)
+ u2u3

Γ(1+2α)Γ(1+4α)
+ u1u4

Γ(1+α)Γ(1+5α)

)
Γ(1+6α)
Γ(1+3α)

t3α

+
(

u2u4

Γ(1+3α)Γ(1+4α)
+

u2
3

Γ(1+3α)Γ(1+4α)
+ u2u4

Γ(1+2α)Γ(1+5α)

)
Γ(1+7α)
Γ(1+4α)

t4α

+
(

u3u4

Γ2(1+4α)
+ u3u4

Γ(1+3α)Γ(1+5α)

)
Γ(1+8α)
Γ(1+5α)

t5α +
(

u2
4

Γ(1+4α)Γ(1+5α)

)
Γ(1+9α)
Γ(1+6α)

t6α
]
.
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Thus, we solve D3α
t Res4(0) = 0 to get

D3α
t Res4(0) = κu4 − u3 +

(
2u0u3 + 2u1u2

Γ(1 + 3α)

Γ(1 + α)Γ(1 + 2α)

)
+

(
u0u2

Γ(1 + 3α)
+

u21
Γ(1 + α)Γ(1 + 2α)

+
u0u2

Γ(1 + α)Γ(1 + 2α)

)
Γ(1 + 3α)

= 0.

We have the coefficient u4 as

u4 =
1

κ

[
u3 −

(
2u0u3 + 2u1u2

Γ(1+3α)
Γ(1+α)Γ(1+2α)

)
−
(
u0u2 +

u2
1Γ(1+3α)

Γ(1+α)Γ(1+2α)
+ u0u2Γ(1+3α)

Γ(1+α)Γ(1+2α)

)]
.

(3.52)

Using a similar argument, to find uk in equation (3.33).

The kth RPS approximate solution is in form

uk(t) = u0 +
k∑

n=1

unt
nα

Γ(1 + nα)
.

Then,

u2k(t) =
k∑

n=0

(
k∑

i=0

uiun−i

Γ(1 + iα)Γ(1 + (n− i)α)

)
tnα

+
k∑

n=1

(
k∑

i=n

uiuk+n−i

Γ(1 + iα)Γ(1 + (k + n− i)α)

)
t(k+n)α.

(3.53)
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We derive the kth residual function as

Resk(t) = κDα
t uk(t)− uk(t) + u2k(t) + uk(t)I

α (uk(t))

= κDα
t

(
u0 +

k∑
n=1

unt
nα

Γ(1 + nα)

)
−

(
k∑

n=0

unt
nα

Γ(1 + nα)

)
[

k∑
n=0

(
k∑

i=0

uiun−i

Γ(1 + iα)Γ(1 + (n− i)α)

)
tnα

+
k∑

n=1

(
k∑

i=n

uiuk+n−i

Γ(1 + iα)Γ(1 + (k + n− i)α)

)
t(k+n)α

]

+

(
k∑

n=0

unt
nα

Γ(1 + nα)

)
Iα0

(
k∑

n=0

unt
nα

Γ(1 + nα)

)

= κDα
t

(
u0 +

k∑
n=1

unt
nα

Γ(1 + nα)

)
−

(
k∑

n=0

unt
nα

Γ(1 + nα)

)
[

k∑
n=0

(
k∑

i=0

uiun−i

Γ(1 + iα)Γ(1 + (n− i)α)

)
tnα

+
k∑

n=1

(
k∑

i=n

uiuk+n−i

Γ(1 + iα)Γ(1 + (k + n− i)α)

)
t(k+n)α

]

+

[
k∑

n=0

(
k∑

i=0

uiun−i

Γ(1 + iα)Γ(1 + (n+ 1− i)α)

)
t(n+1)α

+
k∑

n=1

(
k∑

i=n

uiuk+n−i

Γ(1 + iα)Γ(1 + (k + n+ 1− i)α)

)
t(k+n+1)α

]
.

So,

Resk(t) = κ
k∑

n=1

unt
(n−1)α

Γ(1 + (n− 1)α)
−

(
k∑

n=0

unt
nα

Γ(1 + nα)

)
[

k∑
n=0

(
k∑

i=0

uiun−i

Γ(1 + iα)Γ(1 + (n− i)α)

)
tnα

+
k∑

n=1

(
k∑

i=n

uiuk+n−i

Γ(1 + iα)Γ(1 + (k + n− i)α)

)
t(k+n)α

]

+

[
k∑

n=0

(
k∑

i=0

uiun−i

Γ(1 + iα)Γ(1 + (n+ 1− i)α)

)
t(n+1)α

+
k∑

n=1

(
k∑

i=n

uiuk+n−i

Γ(1 + iα)Γ(1 + (k + n+ 1− i)α)

)
t(k+n+1)α

]
.

(3.54)



42

Now, we apply the operator D(k−1)α
t on both sides of equation (3.54) becomes

D
(k−1)α
t Resk(t) = κuk −

(
uk−1 +

ukt
α

Γ(1+α)

)
+

[
k−1∑
i=0

uiuk−1−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

+
k∑

i=0

uiuk−iΓ(1 + kα)

Γ(1 + iα)Γ(1 + (k − i)α)Γ(1 + α)
tα

+
k∑

n=1

(
k∑

i=n

uiuk+n−iΓ(1 + (k + n)α)

Γ(1 + iα)Γ(1 + (k + n− i)α)Γ(1 + (n+ 1)α)

)
t(n+1)α

]

+

[
k−2∑
i=0

uiuk−2−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

+
k−1∑
i=0

uiuk−1−iΓ(1 + kα)

Γ(1 + iα)Γ(1 + (k − i)α)Γ(1 + α)
tα

+
k∑

i=0

uiuk−iΓ(1 + (k + 1)α)

Γ(1 + iα)Γ(1 + (k + 1− i)α)Γ(1 + 2α)
t2α

+
k∑

n=1

(
k∑

i=n

uiuk+n−iΓ(1 + (k + n+ 1)α)

Γ(1 + iα)Γ(1 + (k + n+ 1− i)α)Γ(1 + (n+ 2)α)

)
t(n+2)α

]
.

Solving the equation D(k−1)αResk(0) = 0, we have

D
(k−1)α
t Resk(0) = κuk − uk−1 +

(
k−1∑
i=0

uiuk−1−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

)

+

(
k−2∑
i=0

uiuk−2−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

)
= 0.

The coefficient uk is expressed as follows

uk =
1

κ

[
uk−1 −

(
k−1∑
i=0

uiuk−1−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

)

−

(
k−2∑
i=0

uiuk−2−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

)]
.

(3.55)
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Convergence analysis

In this section, we prove the convergence of the residual power series method

by using Lemma 3.7.

Theorem 3.9. The fractional power series solution of fractional population growth

model (3.30):

u(t) =
∞∑
n=0

unt
nα

Γ(1 + nα)
,

where the coefficients are defined in equation (3.55) has a positive radius of conver-

gence.

Proof. Since the coefficient uk is

uk =
1

κ

[
uk−1 −

(
k−1∑
i=0

uiuk−1−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

)

−

(
k−2∑
i=0

uiuk−2−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

)]
.

we can see that

|uk|
Γ(1 + kα)

≤

∣∣∣∣∣∣∣∣∣∣∣

1

κ
uk−1 −

1

κ

(
k−1∑
i=0

uiuk−1−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

)
Γ(1 + kα)

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣
1

κ

(
k−2∑
i=0

uiuk−2−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

)
Γ(1 + kα)

∣∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣1κ
∣∣∣∣ |uk−1|
Γ(1 + kα)

+

∣∣∣∣1κ
∣∣∣∣
∣∣∣∣∣
k−1∑
i=0

uiuk−1−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

∣∣∣∣∣
Γ(1 + kα)

+

∣∣∣∣1κ
∣∣∣∣
∣∣∣∣∣
k−2∑
i=0

uiuk−2−iΓ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)

∣∣∣∣∣
Γ(1 + kα)
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|uk|
Γ(1 + kα)

≤
∣∣∣∣1κ
∣∣∣∣ |uk−1|
Γ(1 + kα)

+

∣∣∣∣1κ
∣∣∣∣ k−1∑
i=0

|ui| |uk−1−i|Γ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)Γ(1 + kα)

+

∣∣∣∣1κ
∣∣∣∣ k−2∑
i=0

|ui| |uk−2−i|Γ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)Γ(1 + kα)

≤
∣∣∣∣1κ
∣∣∣∣ |uk−1|
Γ(1 + kα)

+

∣∣∣∣1κ
∣∣∣∣ max
0≤i≤k−1

{
Γ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)Γ(1 + kα)

} k−1∑
i=0

|ui| |uk−1−i|

+

∣∣∣∣1κ
∣∣∣∣ max
0≤i≤k−2

{
Γ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)Γ(1 + kα)

} k−2∑
i=0

|ui| |uk−2−i|

= A |uk−1|+B

k−1∑
i=0

|ui| |uk−1−i|+ C

k−2∑
i=0

|ui| |uk−2−i| ,

where

A =

∣∣∣∣1κ
∣∣∣∣

Γ(1 + kα)
, B = max

0≤i≤k−1

{
Γ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)Γ(1 + kα)

} ∣∣ 1
κ

∣∣
C = max

0≤i≤k−2

{
Γ(1 + (k − 1)α)

Γ(1 + iα)Γ(1 + (k − 1− i)α)Γ(1 + kα)

} ∣∣ 1
κ

∣∣ .
Let

h(t) =
∞∑
k=0

akt
k (3.56)

where a0 = |u0| , a1 = |u1|
Γ(1+α)

and

ak = A ak−1 +B
k−1∑
i=0

aiak−1−i + C
k−2∑
i=0

aiak−2−i, k = 2, 3, 4, .... (3.57)

be the classical power series.
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Thus,

ω = h(t) = a0 + a1t+
∞∑
k=2

akt
k

= a0 + a1t+
∞∑
k=2

(
Aak−1 +B

k−1∑
i=0

aiak−1−i + C
k−2∑
i=0

aiak−2−i

)
tk

= a0 + a1t+ A

∞∑
k=2

ak−1t
k +B

∞∑
k=2

(
k−1∑
i=0

aiak−1−i

)
tk + C

∞∑
k=2

(
k−2∑
i=0

aiak−2−i

)
tk

= a0 + a1t+ At

∞∑
k=1

akt
k +Bt

∞∑
k=1

(
k∑

i=0

aiak−i

)
tk + Ct2

∞∑
k=0

(
k∑

i=0

aiak−i

)
tk.

Let

H(t, ω) = ω − a0 − a1t− At(ω − a0)−Bt(ω2 − a20)− Ct2ω2. (3.58)

Then

Hω(t, ω) = 1− tA− 2Btω − 2Ct2ω.

Regarding at point (0, a0), the function H(t, ω) is 0 and the partial derivative

of the function H(t, ω) with respect to ω is 1. We can see that H(t, ω) is an ana-

lytic function, so H(t, ω) has continuous derivatives. By implicit function theorem

(Rudin, 2004), there is a neighborhood of (0, a0) so that whenever t is sufficiently close

to 0 there is a unique ω so that H(t, ω) = 0. Then, h(t) is an analytic function in the

neighborhood of the point (0, a0) of the (t, ω)-plane with a positive radius of conver-

gence. From Lemma 3.7, the series in equation (3.32) converges.



CHAPTER 4

NUMERICAL RESULTS

In this chapter, we present an example to show a numerical solution by RPS

method with Adomian polynomials.

Numerical results

Numerical results for fractional logistic equation

Firstly, we apply the RPS method for solving the fractional logistic equa-

tion. Comparison of this solution when α = 1 with the exact solution presented in

equation (1.4) is reported in Tables 4.1 - 4.3. In the following examples, we use k = 3

and k = 4. Then, the numerical solution of fractional logistic equation is given by

u3(t) = u0 + u1
tα

Γ(1 + α)
+ u2

t2α

Γ(1 + 2α)
+ u3

t3α

Γ(1 + 3α)
, (4.1)

where the coefficients u1, u2 and u3 are

u1 = ρα
(
u0 − u20

)
u2 = ρα (u1 − 2u0u1)

u3 = ρα
(
u2 − 2u0u2 − u21

Γ(1 + 2α)

Γ2(1 + α)

)
.

Let

error(t) = |uexact(t)− u3(t)| , t ≥ 0. (4.2)

Example 4.1. Consider the following fractional logistic equation :

Dα
t u(t) =

1

2α
u(1− u), t > 0, 0 < α ≤ 1.

with the initial condition

u(0) = 0.85.
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Then, the error when α = 1, is reported in the following Table 4.1. Figure

4.1 shows the effect of α on the solution for α = 0.5, 0.75, 1.

Table 4.1 Error when α = 1.

t exact solution u3(t) error(t)
0.00 0.850000000000000 0.850000000000000 0
0.02 0.851270542513367 0.851270542493750 1.96169× 10−11

0.04 0.852532190262384 0.852532189950000 3.12384× 10−10

0.06 0.853784973905210 0.853784972331250 1.57396× 10−9

0.08 0.855028924550894 0.855028919600000 4.95089× 10−9

0.10 0.856264073748411 0.856264061718750 1.20297× 10−8

From Table 4.1, we can see that the approximate solution u3(t) is close to the exact

solution.

Figure 4.1 The approximate solution of Example 4.1 for some 0 < α ≤ 1.

The attached Figure 4.1 illustrates the approximate solutions for various values of

0 < α ≤ 1.

Example 4.2. Consider the following fractional logistic equation :

Dα
t u(t) =

1

4α
u(1− u), t > 0, 0 < α ≤ 1

with the initial condition

u(0) =
1

3
.

Table 4.2 Error when α = 1.

t exact solution u3(t) error(t)
0.00 0.333333333333333 0.333333333333333 0
0.02 0.334445368823947 0.334445368827160 3.21300× 10−12

0.04 0.335559246862188 0.335559246913580 5.13920× 10−11

0.06 0.336674958073288 0.336674958333333 2.60045× 10−10

0.08 0.337792493005687 0.337792493827160 8.21437× 10−10

0.10 0.338911842131240 0.338911844135803 2.00456× 10−9
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Figure 4.2 The approximate solution of Example 4.2 for some 0 < α ≤ 1.

The attached Figure 4.2 illustrates the approximate solutions for various values of

0 < α ≤ 1.

For k = 4, the numerical solution of fractional logistic equation given by

u4(t) = u0 + u1
tα

Γ(1 + α)
+ u2

t2α

Γ(1 + 2α)
+ u3

t3α

Γ(1 + 3α)
+ u4

t4α

Γ(1 + 4α)
, (4.3)

where the coefficient u1, u2, u3 and u4 are

u1 = ρα
(
u0 − u20

)
u2 = ρα (u1 − 2u0u1)

u3 = ρα
(
u2 − 2u0u2 − u21

Γ(1 + 2α)

Γ2(1 + α)

)
u4 = ρα

(
u3 − 2u0u3 − u1u2

Γ(1 + 3α)

Γ(1 + α)Γ(1 + 2α)

)
.
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Let

error(t) = |uexact(t)− u4(t)| , t ≥ 0. (4.4)

Example 4.3. Consider the following fractional logistic equation :

Dα
t u(t) =

1

3α
u(1− u), t > 0, 0 < α ≤ 1

with the initial condition

u(0) =
3

4
.

Table 4.3 Error when α = 1.

t exact solution u4(t) error(t)
0.00 0.750000000000000 0.750000000000000 0
0.02 0.751247915518896 0.751247915514564 4.33198× 10−12

0.04 0.752491657561459 0.752491657492284 6.91750× 10−11

0.06 0.753731219529199 0.753731219179688 3.49511× 10−10

0.08 0.754966595053057 0.754966593950617 1.10244× 10−9

0.10 0.756197777992358 0.756197775306231 2.68613× 10−9

Figure 4.3 The approximate solution of Example 4.3 for some 0 < α ≤ 1.

The attached Figure 4.3 illustrates the approximate solutions for various values of

0 < α ≤ 1.
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Numerical results for the fractional Volterra population model

In this section, a numerical application of RPS method to the fractional Volterra

population growth model is presented. The behaviors of approximate solutions are plot-

ted for different values of α, where α = {1.0, 0.75, 0.5, 0.25}, in Figure 4.4.

Example 4.4. Consider the following the fractional Volterra population growth model

κDα
t u(t) = u(t)− u2(t)− u(t)Iαu(t), α ∈ (0, 1],

u(0) = 0.2,

In this example, we use k = 6 and κ = 0.3.

Table 4.4 The solution of Example 4.4 when k = 6.

t u6(t)
0.0 0.200000000000000
0.2 0.330324618515470
0.4 0.483859375387898
0.6 0.583645297777778
0.8 0.497136132370066
1.0 0.048529187623838

Figure 4.4 The approximate solution of Example 4.4 for some 0 < α ≤ 1.



CHAPTER 5

CONCLUSION AND DISCUSSION

Throughout this thesis, we study the fractional logistic equations and Voltera’s

population growth model. A combination of the residual power series method and the

Adomian polynomials is presented for obtaining solutions from the following equa-

tions:

1. The fractional logistic equations

Dα
t u(t) = ραu (1− u) , α ∈ (0, 1],

with the initial condition

u(0) = u0, u0 > 0,

and ρ > 0. The derivative in fractional logistic equation is in the Caputo sense.

2. The fractional Volterra population growth model

κDα
t u(t) = u(t)− u2(t)− u(t)Iαu(t), α ∈ (0, 1],

with the initial condition

u(0) = u0, u0 > 0,

and κ > 0 is a prescribed non-dimensional parameter and u(t) is the scaled popu-

lation of identical individuals at time t. The derivative in fractional Volterra pop-

ulation growth model is in the Caputo sense and Iαu(t) is the Riemann-Liouville

fractional integral operator of order α > 0.

We have presented a combination of the residual power series method with

the Adomian polynomials for obtaining solutions of fractional logistic equations and

the fractional Volterra population growth model. This method provides approximate

analytic solutions. The convergence analysis of the solutions was showed in Chapter 3.

The numerical results of the fractional logistic equations supporting that this method is
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valid with moderate accuracy. The numerical results show that this method is applicable

to solve fractional Volterra population growth model. We can observe from the results

that when the order α decreases, the critical time decreases, whereas the amplitude of

u(t) is consistent.

The advantages of the RPS method with Adomian polynomials are as follows:

1. We show the advantage of integrating the Adomian polynomials to the RPSM in

reducing some computational work on algebraic manipulation.

2. The approximate solutions is easy to obtain from the RPS method with Adomian

polynomials.

3. This method can be modified to solve the nonlinear equations.

However, a combination of the RPS method and Adomian polynomials can be applied

with differential equations inclusive of the fractional differential equations especially

nonlinear equations. The Adomian polynomials are used for the nonlinear term in an

easy.

Future research

1. Applying this method to solve nonlinear fractional differential equations.
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