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CHAPTER 1

INTRODUCTION

In this chapter, we give some background on polynomials generated by the

Fibonacci sequence and the definition of hyper-Fibonacci numbers.

Introduction

In 2007, Garth, Mills and Mitchell began to study several properties of the ze-

ros of polynomials which are built from the Fibonacci sequence, and they study Mahler

measures of these polynomials with coefficients reduced modulo Lucas numbers. They

defined the Fibonacci-coefficient polynomial (FCP) of order n, denoted by pn(x), by

pn(x) =
n∑

k=0

Fk+1x
n−k

= F1x
n + F2x

n−1 + F3x
n−2 + · · ·+ Fnx+ Fn+1

where Fn is Fibonacci sequence defined by

Fn = Fn−1 + Fn−2

for all n ⩾ 2, with F0 = 0 and F1 = 1.

For example,

p1(x) = x+ 1,

p2(x) = x2 + x+ 2,

p3(x) = x3 + x2 + 2x+ 3,

p4(x) = x4 + x3 + 2x2 + 3x+ 5,

p5(x) = x5 + x4 + 2x3 + 3x2 + 5x+ 8,

p6(x) = x6 + x5 + 2x4 + 3x3 + 5x2 + 8x+ 13,

p7(x) = x7 + x6 + 2x5 + 3x4 + 5x3 + 8x2 + 13x+ 21.
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Then, they studied behavior of zeros of FCPs and they found that if n is even,

then FCP has no real zeros and if n is odd, FCP has only 1 real zero. Afterwards,

they proved that in the latter case the sequence of unique real zeros is decreasing and

approaches the negative of the golden ratio. They also proved that in general as n → ∞,

the zeros of FCP approach the golden ratio in modulus.

For a polynomial non-constant P (z) = anz
n + · · · + a0 = an

n∏
i=1

(z − αi) ∈

C[z], the Mahler measure M(P ) is given by

M(P ) := |an|
n∏

i=1

max (1, |αi|).

Garth et al. (2007) studied Mahler measures of FCPs. It is a well-known fact that for

any m ∈ N, the sequence of Fibonacci numbers modulo m is simply periodic.

For example,

Fn mod 4 = 0 1 1 2 3 1 0 1 1 2 3 . . .

Fn mod 5 = 0 1 1 2 3 0 3 3 1 4 0 4 4 3 2 0 2 2 4 1 0 1 1 2 3 . . .

We can adjust Fn mod m so that the residue classes range between −m− 1

2

to
m− 1

2
when m is odd and −m

2
+ 1 to

m

2
when m is even. For m ⩾ 2, they

defined Fibonacci-coefficient polynomials modulo m, denoted by p
(m)
n (x), by reducing

the coefficients of pn(x) modulo m using the adjusted residue classes mentioned above.

For example,

p5(x) = x5 + x4 + 2x3 + 3x2 + 5x+ 8,

p
(2)
5 (x) = x5 + x4 + x2 + x,

p
(3)
5 (x) = x5 + x4 − x3 − x− 1.

Finally, they consider the Mahler measure of p(m)
n (x) and they found that the

Mahler measures of an infinite subsequence of {p(m)
n (x)}∞n=1 equals the Mahler measure

of p(m)
t−2(x), when t is the period of the Fibonacci sequence reduced modulo m. In the

particular case when m = Ln, the nth Lucas number, they showed that the Mahler
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measure of p(Ln)
n (x) is φn−1, where φ =

1 +
√
5

2
.

In this thesis, we will consider hyper-Fibonacci numbers instead of Fibonacci

numbers. The hyper-Fibonacci numbers F
(r)
n can be seen as entries an infinite matrix

arranged in such a way that F (r)
n is the entry of the (r+ 1)th row and (n+ 1)th column,

satisfying F
(0)
n = Fn, F (r)

0 = 0, F (r)
1 = 1, and

F (r)
n = F

(r)
n−1 + F (r−1)

n , for r ⩾ 1, n ⩾ 1.

We define hyper-Fibonacci-coefficient polynomial (hFCP) as

pr,n(x) =
n∑

k=0

F
(r)
k+1x

n−k

= F
(r)
1 xn + F

(r)
2 xn−1 + F

(r)
3 xn−2 + · · ·+ F (r)

n x+ F
(r)
n+1.

We study zeros of hFCP’s. In particular, we expect that they have several properties

analogous to those of FCPs. Finally, we plan to study period of hyper-Fibonacci num-

bers for some r.

Research objectives

1. To study hyper-Fibonacci numbers.

2. To investigate the existence and bounds of real zeros of hFCP’s .

3. To study behavior of moduli of zeros of some hFCP’s pr,n(x) for some r

and large n.

4. To study the period of hyper-Fibonacci numbers F (r)
n for some r.

Scope of the study

In this thesis, we will study hFCPs defined by

pr,n(x) =
n∑

k=0

F
(r)
k+1x

n−k

= F
(r)
1 xn + F

(r)
2 xn−1 + F

(r)
3 xn−2 + · · ·+ F (r)

n x+ F
(r)
n+1
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and investigate their properties in directions analogous to those of Garth et al. (2007).

In particular, we determine location of their real zeros and the behavior of zeros of

pr,n(x) as n → ∞. Finally, we will try to understand periodicity of hyper-Fibonacci

numbers for some r. In the initial stage of our study, we consider the case r = 1. If

possible, we will try to extend our results to arbitrary r ∈ N ∪ {0}.



CHAPTER 2

PRELIMINARIES AND LITERATURE REVIEWS

Fibonacci sequence

Definition 2.1. (Koshy, 2011) The Fibonacci numbers, denoted by Fn, are defined by

Fn = Fn−1 + Fn−2 for n ⩾ 1

for all n ⩾ 2, with F0 = 0 and F1 = 1.

Definition 2.2. (Garth, Mills & Mitchell, 2007) The Fibonacci-coefficient polynomial

(FCP) of order n, denoted by pn(x), is defined by

pn(x) =
n∑

k=0

Fk+1x
n−k

= F1x
n + F2x

n−1 + F3x
n−2 + · · ·+ Fnx+ Fn+1.

Example 2.3.

p1(x) = x+ 1,

p2(x) = x2 + x+ 2,

p3(x) = x3 + x2 + 2x+ 3,

p4(x) = x4 + x3 + 2x2 + 3x+ 5,

p5(x) = x5 + x4 + 2x3 + 3x2 + 5x+ 8,

p6(x) = x6 + x5 + 2x4 + 3x3 + 5x2 + 8x+ 13,

p7(x) = x7 + x6 + 2x5 + 3x4 + 5x3 + 8x2 + 13x+ 21.

Definition 2.4. (Garth et al., 2007) Fibonacci-coefficient polynomials modulo m, de-

noted by p
(m)
n (x), is constructed by reducing the coefficients of pn(x) modulo m using

(Fk mod m)−m if (Fk mod m) >
m

2
.
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Example 2.5. The Fibonacci-coefficient polynomial (FCP) of order 4 modulo m

p4(x) = x4 + x3 + 2x2 + 3x+ 5,

p
(2)
4 (x) = x4 + x3 + x+ 1,

p
(3)
4 (x) = x4 + x3 − x2 − 1,

p
(4)
4 (x) = x4 + x3 + 2x2 − x+ 1,

p
(5)
4 (x) = x4 + x3 + 2x2 − 2x.

Example 2.6. The Fibonacci-coefficient polynomial (FCP) of order 5 modulo m

p5(x) = x5 + x4 + 2x3 + 3x2 + 5x+ 8,

p
(2)
5 (x) = x5 + x4 + x2 + x,

p
(3)
5 (x) = x5 + x4 − x3 − x− 1,

p
(4)
5 (x) = x5 + x4 + 2x3 − x2 + x,

p
(5)
5 (x) = x5 + x4 + 2x3 − 2x2 − 2.

Example 2.7. The Fibonacci-coefficient polynomial (FCP) of order 6 modulo m

p6(x) = x6 + x5 + 2x4 + 3x3 + 5x2 + 8x+ 13,

p
(2)
6 (x) = x6 + x5 + x3 + x2 + 1,

p
(3)
6 (x) = x6 + x5 − x4 − x2 − x+ 1,

p
(4)
6 (x) = x6 + x5 + 2x4 − x3 + x2 + 1,

p
(5)
6 (x) = x6 + x5 + 2x4 − 2x3 − 2x− 2.
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Definition 2.8. (Koshy, 2011) The Lucas numbers, denoted Ln, are defined by

Ln = Ln−1 + Ln−2 for n ⩾ 1

for all n ⩾ 2, with L0 = 2 and L1 = 1.

The following formula gives a close relationship between the Fibonacci numbers,

the Lucas numbers and the golden ratio φ =
1 +

√
5

2
.

Lemma 2.9. (Koshy, 2011) (Binet’s Formula) Let φ =
1 +

√
5

2
and τ =

1−
√
5

2
. For

all n ∈ N, we have

Fn =
φn − τn

φ− τ
=

1√
5
φn +

1√
5
·
(
− 1

φ

)n

and

Ln = φn + τn = φn +

(
−1

τ

)n

.

Periods of Fibonacci sequence reduced modulo m

For any integer m ⩾ 2, the Fibonacci sequence becomes periodic when re-

duced modulo m. In general the Fibonacci sequence modulo m must repeat because

there are only m2 possible pairs of residue classes. Note that any two consecutive

Fibonacci numbers cannot be both zero modulo m, so the period of any Fibonacci se-

quence mod m has a maximum length of m2 − 1 (Wall, 1960).

Example 2.10.

Fn mod 3 = 0 1 1 2 0 2 2 1 0 1 1 2 . . .

Fn mod 4 = 0 1 1 2 3 1 0 1 1 2 3 . . .

Fn mod 5 = 0 1 1 2 3 0 3 3 1 4 0 4 4 3 2 0 2 2 4 1 0 1 1 2 3 . . .

Fn mod 7 = 0 1 1 2 3 4 1 5 1 6 0 6 6 5 4 2 6 1 0 1 1 2 3 . . .

Fn mod 11 = 0 1 1 2 3 5 8 2 10 1 0 1 1 2 3 5 . . .
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Lemma 2.11. (Garth et al., 2007) If n is odd, then the period of the Fibonacci sequence

modulo Ln, with residue classes adjusted to range between −Ln − 1

2
to

Ln − 1

2
for odd

Ln and −Ln

2
+ 1 to

Ln

2
for even Ln, is

F0, F1, F2, F3, . . . , Fn, (−Fn−1), Fn−2, (−Fn−3), Fn−4, . . . , (−F2), F1.

Example 2.12. Fn ⇒ 0 1 1 2 3 5 8 13 21 34 55 89 144 . . .

Fk mod L3 ⇒ Fk mod 4 we have range between -1 to 2.

0 1 1 2 -1 1 0 1 1 2 -1 1 0 1 1 2 -1 1 . . .

Thus period is 0 1 1 2 -1 1

F0 F1 F2 F3 -F2 F1.

Example 2.13. Fn ⇒ 0 1 1 2 3 5 8 13 21 34 55 89 144 . . .

Fk mod L5 ⇒ Fk mod 11 we have range between -5 to 5.

0 1 1 2 3 5 -3 2 -1 1 0 1 1 2 3 5 -3 2 -1 1 0 1 . . .

Thus period is 0 1 1 2 3 5 -3 2 -1 1

F0 F1 F2 F3 F4 F5 -F4 F3 - F2 F1.

Lemma 2.14. (Garth et al., 2007) If n is even, then the period of the Fibonacci sequence

modulo Ln with residue classes adjusted to range between −Ln − 1

2
to

Ln − 1

2
for odd

Ln and −Ln

2
+ 1 to

Ln

2
for even Ln, is

F0, F1, F2, F3, . . . , Fn, (−Fn−1), Fn−2, (−Fn−3), Fn−4, . . . , F2, (−F1),

F0, (−F1), (−F2), (−F3), . . . , (−Fn), Fn−1, (−Fn−2), Fn−3, . . . , (−F2), F1.

Example 2.15. Fn ⇒ 0 1 1 2 3 5 8 13 21 34 55 89 144 . . .

Fk mod L2 ⇒ Fk mod 3 we have range between -1 to 1.

0 1 1 -1 0 -1 -1 1 0 1 1 -1 0 -1 -1 1 0 1 . . .

Thus period is 0 1 1 -1 0 -1 -1 1

F0 F1 F2 -F1 F0 -F1 -F2 F1.

Example 2.16. Fn ⇒ 0 1 1 2 3 5 8 13 21 34 55 89 144 . . .

Fk mod L4 ⇒ Fk mod 7 we have range between -3 to 3.

0 1 1 2 3 -2 1 -1 0 -1 -1 -2 -3 2 -1 1 0 1 . . .
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Thus period is

0 1 1 2 3 -2 1 -1 0 -1 -1 -2 -3 2 -1 1

F0 F1 F2 F3 F4 -F3 F2 - F1 F0 -F1 -F2 -F3 -F4 F3 -F2 F1.

Zeros of FCPs

Garth et al. (2007) investigated the zeros of the FCPs and they obtained several

results, as given below.

Let gn(x) = pn(x)(x
2 − x− 1) for n ∈ N. In the proofs of their main results,

they used the following identities, which are straightforward to verify.

gn(x) := pn(x)(x
2 − x− 1) = xn+2 − Fn+2x− Fn+1,

xn+1 − Fn+1 = (x− 1)pn(x)− xpn−2(x),

xn + Fn = pn(x)− (x+ 1)pn−2(x).

Theorem 2.17. (Garth et al., 2007) For even n, pn(x) has no real zeros. For odd

n, pn(x) has exactly one real zero, which lies in the interval (−φ,−1]. Moreover, the

sequence of real zeroes of the pn(x), with n odd, decreases monotonically to −φ.

Example 2.18.
p4(x) = x4 + x3 + 2x2 + 3x+ 5

Zeros of this polynomial are (approximately) 0.5784 ± 1.4629i, -1.0784 ± 0.9260i,

so p4(x) has no real zeros.

Example 2.19.
p5(x) = x5 + x4 + 2x3 + 3x2 + 5x+ 8

Zeros of this polynomial are (approximately) 0.8556 ± 1.3422i, -1.3912, -0.6601 ±

1.3543i,

so p5(x) has exactly one real zero, namely -1.3912. . . ∈ (−φ,−1].
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The proof of Theorem 2.17 relies on Descartes’ rule of sign and the inter-

mediate value theorem. Descartes’ rule of sign can be used to estimate the number of

positive real zeros and negative real zeros by counting the sign changes of the coeffi-

cients of the polynomial function f(x) and f(−x), respectively (Anderson, Jackson &

Sitharam, 2018).

Example 2.20.
f(x) = 2x5 − x4 + 5x3 + 6x2 − x+ 8

For the positive-root case, consider

f(x) = 2x5 − x4 + 5x3 + 6x2 − x+ 8.

There are four sign changes in f(x). This number “four” is the maximum possible

number of positive zeros of this polynomial.

For the negative-root case, consider

f(−x) = 2(−x)5 − (−x)4 + 5(−x)3 + 6(−x)2 − (−x) + 8

= −2x5 − x4 − 5x3 + 6x2 + 2x+ 8.

There is only one sign change in f(−x), so f(x) has at most one negative root.

Therefore there are 4, 2, or 0 positive roots, and exactly 1 negative root.

Example 2.21.

f(x) = 4x7 + 3x6 + x5 + 2x4 − x3 + 9x2 + x+ 1

For the positive-root case, consider

f(x) = 4x7 + 3x6 + x5 + 2x4 − x3 + 9x2 + x+ 1.

There are two sign changes in f(x). This number “two” is the maximum possible

number of positive zeroes of this polynomial.

For the negative-root case, consider

f(−x) = 4(−x)7 + 3(−x)6 + (−x)5 + 2(−x)4 − (−x)3 + 9(−x)2 + (−x) + 1

= −4x7 + 3x6 − x5 + 2x4 + x3 + 9x2 − x+ 1.
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There are five sign changes in f(x). This number “five” is the maximum possible

number of negative zeroes of this polynomial .

Therefore there are 2, or 0 positive roots, and 5, 3, or 1 negative roots.

Theorem 2.22. (Bartle & Sherbert, 2000) (Intermediate value theorem) If f is a con-

tinuous function in the interval [a,b] and c is arbitrary between f(a) and f(b), then

there exists x in the interval [a,b] such that f(x) = c.

Theorem 2.23. (Garth et al., 2007) As n increases without bound, the roots of pn(x)

approach φ in modulus.

We use Mathematica to locate the zeros of FCP of order 5, 10, and 15, as

illustrated in the figure below.

Figure 2.1 The zeros of pn(x) with n = 5, 10, 15

In the proof of Theorem 2.23, Garth et al. use the following result:
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Theorem 2.24. (Marden, 1966) (Rouché’s Theorem) If P (z) and Q(z) are analytic

interior to a simple closed Jordan curve C, and if they are continuous on C and

|P (z)| < |Q(z)|, z ∈ C,

then the function H(z) = P (z) + Q(z) has the same number of zeros interior to C as

does Q(z).

Mahler Measures

Definition 2.25. (Mossinghoff, 1998) Let P (z) = anz
n + · · ·+ a0 = an

n∏
i=1

(z − αi) ∈

C[z] be a non-constant polynomial.The Mahler Measure M(P) is given by

M(P ) := |an|
n∏

i=1

max (1, |αi|)

= |an|
∏

|αi|>1

|αi|.

Garth et al. (2007) consider the Mahler measure of the p
(m)
k (x) defined in the introduc-

tion. They consider the Mahler measures of an infinite subsequence of
{
p
(m)
n (x)

}∞

n=1

and prove the following theorem:

Theorem 2.26. (Garth et al., 2007) Let m ⩾ 2, and let t be the number of terms in one

period of the Fibonacci sequence reduced modulo m. If k ≡ −2 or − 1 mod t, then

M
(
p
(m)
k (x)

)
= M

(
p
(m)
t−2(x)

)
.

Finally, Garth et al. (2007) established the following theorem:

Theorem 2.27. (Garth et al., 2007) If k ≡ −2 or − 1 mod 2n then M
(
p
(Ln)
k (x)

)
=

φn−1.
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hyper-Fibonacci numbers

Dil and Mezó (2008) defined hyper-Fibonacci numbers F (r)
n as follows:

Definition 2.28. (Dil & Mezó, 2008) The hyper-Fibonacci numbers F (r)
n are defined by

the following recursive relation:

F (r)
n =

n∑
k=0

F
(r−1)
k , with F (0)

n = 0, and F
(r)
1 = 1.

Table 2.1 Sequence of hyper-Fibonacci numbers in the first few generations

n 0 1 2 3 4 5 6 7 · · ·
F

(0)
n 0 1 1 2 3 5 8 13 · · ·

F
(1)
n 0 1 2 4 7 12 20 33 · · ·

F
(2)
n 0 1 3 7 14 26 46 79 · · ·

F
(3)
n 0 1 4 11 25 51 97 179 · · ·
...

...
...

...
...

...
...

...
...

We record the generating function and a useful identity for F (r)
n below.

Proposition 2.29. (Dil & Mezó, 2008) The generating function of the hyper-Fibonacci

numbers can be written as
∞∑
n=0

F (r)
n tn =

t

(1− t− t2)(1− t)r
.

Lemma 2.30. (Cristea, Martinjak & Urbiha, 2016) The difference between the n-th

r-generation hyperfibonacci number and the sum of its two consecutive predecessors is

the n-th regular (r-1)-topic number; i.e.,

F
(r)
n+2 = F

(r)
n+1 + F (r)

n +

(
n+ r

r − 1

)
, n ⩾ 0.
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Literature Reviews

Mátyás (2007) considered the nth term of the second order linear recursive

sequence

R = {Rn}∞n=0 ,

where n ⩾ 2, R0 = 0 and R1 = 1

Rn = ARn−1 +BRn−2.

In special case A = B = 1, Rn is the usual Fibonacci-sequence

Fn = Fn−1 + Fn−2 (n ⩾ 2) where F0 = 0, F1 = 1.

Following work of Garth et al. (2007), Mátyás (2007) studied the zeros of the general-

ized Fibonacci-coefficient polynomial (GFCP) qn(x) defined by

qn(x) =
n∑

k=0

Rk+1x
n−k

= R1x
n +R2x

n−1 +R3x
n−2 + · · ·+Rnx+Rn+1.

Later, Mátyás (2008) studied the zeros of much more general polynomials

q
(i)
n (x) and q

(i,t)
n (x), defined by

q(i)n (x) =
n∑

k=0

Ri+kx
n−k

= Rix
n +Ri+1x

n−1 +Ri+2x
n−2 + · · ·+Ri+n−1x+Ri+n,

q(i,t)n (x) =
n∑

k=0

Ri+ktx
n−k

= Rix
n +Ri+tx

n−1 +Ri+2tx
n−2 + · · ·+Ri+(n−1)tx+Ri+nt,

Mátyás and Szalay (2011) studied the Tribonacci sequence defined by Tn =

Tn−1 + Tn−2 + Tn−3, n ⩾ 3 with initial values T0 = 0, T1 = 0 and T2 = 1, and they

considered the Tribonacci-coefficient polynomial

Pn(x) = T2x
n + T3x

n−1 + · · ·+ Tn+1x+ Tn+2.

For even n ⩾ 2, they showed that qn(x), q
(i)
n (x), q(i,t)n (x) and Pn(x) have no real zeros,

and for odd n ⩾ 3, qn(x), q
(i)
n (x), q(i,t)n (x) and Pn(x) have exactly one real zero.
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Mansour and Shattuck (2012) studied the k-Fibonacci numbers an defined by

an = an−1 + an−2 + · · ·+ an−k, (n ⩾ k)

with the initial values a0 = a1 = · · · = ak−2 = 0 and ak−1 = 1, k ⩾ 2. These reduce

to the Fibonacci numbers Fn when k = 2 and Tribonacci numbers Tn when k = 3.

Then they defined the k-Fibonacci coefficient polynomial Pn,k(x) by

Pn,k(x) = ak−1x
n + akx

n−1 + · · ·+ an+k−2x+ an+k−1.

They obtain the following result:

If n is even, then Pn,k(x) has no real zeros, and if n is odd, then Pn,k(x)

has exactly one real zero, denoted by rn,k. Moreover, they proved that if k ⩾ 2 and

n is odd, then rn,k → −λ as n → ∞, where λ is the unique real zero of ck(x) =

xk − xk−1 − · · · − x− 1 such that λ > 1.

In 2017, Sitthaset, Laohakosol, and Mavecha extended the results of Garth,

Mills and Mitchell (2007) to those of a generalized Fibonacci-coefficient polynomial

(GFCP), initially studied by Mátyás (2007). They obtain results similarly to those of

Garth, Mills and Mitchell (2007) as follows :

For even n ⩾ 2, qn(x) has no real zeros, and for odd n ⩾ 3, qn(x) has

exactly one real zero. They proved in addition that if A2 ⩾ B, then this zero lies in

the interval (−φA,B,−A], where φA,B =
A+

√
A2 + 4B

2
. Furthermore, the sequence

of real zeros of the polynomials qn(x) with odd n converges to −φA,B and the roots of

qn(x) approach φA,B in modulus as n → ∞. Let m ⩾ 2 and t be the number of terms

in one period of generalized Fibonacci sequence modulo m. Sitthaset et al. (2017)

showed that if k ≡ −2 or −1( mod t), then the Mahler measure of q(m)
k (x) equals

Mahler measure of q(m)
t−2(x).

Finally, they proved that if k ≡ −2 or −1 mod 2n, then M(q
(Ln)
k (x)) =

−φn−1
A,B , where Ln is the nth Lucas number.



CHAPTER 3

RESEARCH METHODOLOGY

In this thesis, we will study hyper-Fibonacci-coefficient polynomials (hFCP).

We do the following process.

1. We compute the zeros of the pr,n(x) numerically and predict the number of real

zeros of pr,n(x) and the behavior of all zeros as n → ∞ using MATLAB.

2. We make conjectures based on our numerical results.

3. We prove our conjectures and make a conclusion.



CHAPTER 4

POLYNOMIALS GENERATED BY HYPER-FIBONACCI

NUMBERS

We have investigated the zeros of p1,n(x). We prove that if n is even, then

p1,n(x) has no real zeros and if n is odd, then p1,n(x) has a unique real zero which lies

in the interval [−2,−φ). After that, we show that the complex zeros of p1,n(x) approach

φ in modulus as n → ∞. Finally, we have studied Mahler Measures of p1,n(x) whose

coefficients are reduced modulo m ∈ N, which we denote by p
(m)
1,n (x). In this chapter

we will give detailed proofs of our results and give suggestions for future research.

4.1 Zeros of hFCPs

Before stating and proving our main results about zeros of hFCPs, let us in-

troduce the auxiliary polynomials gr,n(x) which are defined as follows:

gr,n(x) := pr,n(x)(x
2 − x− 1)(x− 1)r, r, n ∈ N ∪ {0}. (4.1)

It is clear from (4.1) that the zeros of gr,n(x) completely determines those of pr,n(x) and

we will focus on gr,n(x) first. The expansion of g0,n(x) has been given in (Garth, Mills

& Mitchell, 2007), namely

g0,n(x) = xn+2 − Fn+2x− Fn+1. (4.2)

The expansions of gr,n(x) for the first few values of r ⩾ 1 are given below.
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Example 4.1.

g1,n(x) = xn+3 − (F
(1)
n+1 + F (1)

n + 1)x2 + F (1)
n x+ F

(1)
n+1,

g2,n(x) = xn+4 − (3F
(2)
n+1 − 2F (2)

n − F
(2)
n−2)x

3 + (2F
(2)
n+1 + F (2)

n − F
(2)
n−1)x

2

+ (F
(2)
n+1 − F (2)

n )x− F
(2)
n+1,

g3,n(x) = xn+5 − (4F
(3)
n+1 − 5F (3)

n + F
(3)
n−1 + 2F

(3)
n−2 − F

(3)
n−3)x

4

+ (5F
(3)
n+1 − F (3)

n − 2F
(3)
n−1 + F

(3)
n−2)x

3 − (F
(3)
n+1 + 2F (3)

n − F
(3)
n−1)x

2

− (2F
(3)
n+1 − F (3)

n )x+ F
(3)
n+1.

For r ≥ 1, we have the following expression of gr,n(x).

Proposition 4.2. For r, n ∈ N ∪ {0} with r ≥ 1, we have

gr,n(x) = xr+n+2 − Fn+2x
r+1 − Fn+1x

r

+ (−1)r(x2 − x− 1)
r−1∑
m=0

(
n∑

p=0

(−1)m−p

(
r

m− p

)
F

(r)
n−p+1

)
xm.

(4.3)

Observe from (4.3) that gr,n(x) has at most r + 3 nonzero coefficients, since

the largest power of x in the product of x2 − x − 1 and the double summation is xr+1.

To prove (4.3), we need the following lemmas.

Lemma 4.3. For r, l ∈ N ∪ {0}, we have

Fl+1 =
l∑

k=0

(−1)k
(
r

k

)
F

(r)
l−k+1.

Proof. Recall from Proposition 2.29 that the generating function of the hyper-Fibonacci

numbers can be written as
∞∑
n=0

F (r)
n tn =

t

(1− t− t2)(1− t)r
.

Therefore, we have that for any r ∈ N ∪ {0}
∞∑

m=0

F
(r)
m+1t

m =
1

t

∞∑
m=0

F (r)
m tm =

1

(1− t− t2)(1− t)r
.
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It follows that

∞∑
l=0

Fl+1t
l =

1

1− t− t2

= (1− t)r
∞∑

m=0

F
(r)
m+1t

m

=

(
∞∑
k=0

(−1)k
(
r

k

)
tk

)(
∞∑

m=0

F
(r)
m+1t

m

)

=
∞∑
k=0

∞∑
m=0

(−1)k
(
r

k

)
F

(r)
m+1t

k+m

=
∞∑
l=0

(
l∑

k=0

(−1)k
(
r

k

)
F

(r)
l−k+1

)
tl.

The proof is finished by comparing the coefficients of both sides.

Lemma 4.4. For r, n ∈ N ∪ {0} with r ⩾ 1, let

A = {(m, p) ∈ {0, 1, . . . , r − 1} × {0, 1, . . . ,min {m,n}}}

B = {(k, j) ∈ {0, 1, . . . , r} × {0, 1, . . . , n} | n+ 1 ⩽ k + j ⩽ n+ r} .

Then the assignment f : A → B given by f(m, p) = (r−(m−p), n−p) is a one-to-one

correspondence.

Proof. We will show first that f is well-defined.

Let (m, p) ∈ A. Since 0 ⩽ p ⩽ min {m,n}, we have 0 ⩽ r − (m − p) ⩽ r and

n−p ∈ {0, 1, . . . , n}. Therefore, (r − (m− p), n− p) ∈ {0, 1, . . . , r}×{0, 1, . . . , n}.

Since 1 ⩽ r −m ⩽ r, it follows that n+ 1 ⩽ r −m+ n ⩽ n+ r, so f(m, p) ∈ B.

Next, we show that f is injective.

Let (a, b), (c, d) ∈ A and suppose that f(a, b) = f(c, d).

Then we have (r − (a− b), n− b) = (r − (c− d), n− d). It follows immediately that

b = d and a = c, so (a, b) = (c, d).

Finally, we show that f is surjective.

Let (k, j) ∈ B. Then 0 ⩽ k ⩽ r, 0 ⩽ j ⩽ n and n+ 1 ⩽ k + j ⩽ n+ r.

Hence 0 ⩽ n+ r − k − j ⩽ r − 1 and 0 ⩽ n− j ⩽ n+ r − k − j.
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Therefore, (n+ r − k − j, n− j) ∈ A and f(n+ r − k − j, n− j) = (k, j).

Proof of Proposition 4.2. Let r ∈ N and n ∈ N∪{0}. Then by the definition of pr,n(x)

and the binomial theorem we have

(x− 1)rpr,n(x)− xrp0,n(x) =
r∑

k=0

n∑
j=0

(−1)k
(
r

k

)
F

(r)
j+1x

n+r−k−j −
n∑

l=0

Fl+1x
n+r−l

=
∑

0≤k≤r
0≤j≤n

n+1≤k+j≤n+r

(−1)k
(
r

k

)
F

(r)
j+1x

n+r−k−j

+
∑

0≤k≤r
0≤j≤n

0≤k+j≤n

(−1)k
(
r

k

)
F

(r)
j+1x

n+r−k−j −
n∑

l=0

Fl+1x
n+r−l

=
∑

0≤k≤r
0≤j≤n

n+1≤k+j≤n+r

(−1)k
(
r

k

)
F

(r)
j+1x

n+r−k−j

+
n∑

l=0

l∑
k=0

(−1)k
(
r

k

)
F

(r)
l−k+1x

n+r−l −
n∑

l=0

Fl+1x
n+r−l

=
∑

0≤k≤r
0≤j≤n

n+1≤k+j≤n+r

(−1)k
(
r

k

)
F

(r)
j+1x

n+r−k−j,

where the last equality follows from Lemma 4.3.

By Lemma 4.4, we can rewrite the last expression above as

(x− 1)rpr,n(x)− xrp0,n(x) =
r−1∑
m=0

min(m,n)∑
p=0

((
r

r − (m− p)

)
(−1)r−(m−p)F

(r)
n−p+1

) xm

= (−1)r
r−1∑
m=0

(
n∑

p=0

((
r

m− p

)
(−1)(m−p)F

(r)
n−p+1

))
xm,

where we use the convention
(
a
b

)
= 0 for b < 0. Finally, we multiply through the

equation above by x2 − x− 1 and apply (4.2) to obtain the desired result.

We shall now apply Proposition 4.2 to count the number of real zeros of p1,n(x).



21

Theorem 4.5. Let n ∈ N∪ {0}. If n is even, then p1,n(x) has no real zeros. If n is odd,

then p1,n(x) has a unique real zero, which lies in the interval [−2,−φ).

Proof. Substituting r = 1 into (4.3) and applying F
(r)
n = F

(r)
n−1 + F

(r−1)
n and the identi-

ties

F (1)
n = Fn+2 − 1, (4.4)

F
(1)
n+2 = F

(1)
n+1 + F (1)

n + 1, n ≥ 0, (4.5)

we have

g1,n(x) = p1,n(x)(x
2 − x− 1)(x− 1)

= xn+3 − (F
(1)
n+1 + F (1)

n + 1)x2 + F (1)
n x+ F

(1)
n+1

= xn+3 − F
(1)
n+2x

2 + F (1)
n x+ F

(1)
n+1.

(4.6)

Since F (1)
n+1 ̸= 0, all roots of g1,n(x) must be nonzero. Assume first that n is even. Then

g1,n(−x) = −xn+3 − (Fn+2 + F
(1)
n+1)x

2 − F (1)
n x+ F

(1)
n+1.

By Descartes’ rule of signs, we have that g1,n(x) has at most two positive real zeros and

exactly one negative real zero. Since (x2 − x − 1)(x − 1) = (x − φ)(x − τ)(x − 1),

where φ = 1+
√
5

2
= 1.618 . . . > 0 and τ = −1/φ < 0, we have that p1,n(x) has no real

zeros.

On the other hand, suppose that n is odd. Then

g1,n(−x) = xn+3 − (Fn+2 + F
(1)
n+1)x

2 − F (1)
n x+ F

(1)
n+1.

Therefore, Descartes’ rule of signs implies that g1,n(x) has exactly two positive real

zeros and two negative real zeros. Hence p1,n(x) must have a unique (negative) real

zero. Note that p1,1(x) = x+ 2 and p1,3(x) = x3 + 2x2 + 4x+ 7, whose real zeros are

−2 and −1.866 . . ., respectively. We have Fn =

⌊n−1
2

⌋∑
k=0

(
n− k − 1

k

)
(Cristea, Martinjak

& Urbiha, 2016). Hence for any l ≥ 4



22

F
(1)
l+1 =

⌊ l+2
2

⌋∑
k=1

(
l − (k − 2)

k

)

=

(
l + 1

1

)
+

(
l

2

)
+

⌊ l+2
2

⌋∑
k=3

(
l − (k − 2)

k

)

<

(
l

0

)
+

(
l

1

)
+

(
l

2

)
+

l∑
k=3

(
l

k

)
=

l∑
k=0

(
l

k

)
= 2l.

Thus, substituting x = −2 into (4.6), we have that for n ≥ 5

g1,n(−2) = 2n+3 − 3F
(1)
n+1 − 6F (1)

n − 4

> 2n+3 − 3 · 2n − 6 · 2n−1 − 22

> 2n+3 − 6 · 2n − 2n+1 = 0.

Next, we apply (4.4) and the Binet’s formula Fn = φn−τn√
5

in the evaluation of g1,n(x)

at x = −φ as follows:

g1,n(−φ) = φn+3 − F
(1)
n+2φ

2 − F (1)
n φ+ F

(1)
n+1

= φn+3 −
(
φn+4 − τn+4

√
5

− 1

)
φ2 −

(
φn+2 − τn+2

√
5

− 1

)
φ+

(
φn+3 − τn+3

√
5

− 1

)
= φn+3 + φ2 + φ− 1 +

τn+1(−τ 2 + τ − 1)− φn+6

√
5

= φn+3 + 2φ− 2√
5φn+1

− φn+6

√
5

= φn+6

(
1

φ3
+

2

φn+5
− 2√

5φ2n+7
− 1√

5

)
,

where we have used the fact that φ and τ are roots of x2 − x− 1 and φ = −1/τ. Let

f(x) :=
1

φ3
+

2

φx+5
− 2√

5φ2x+7
− 1√

5
.

Then by calculation we have f(1) = −0.1114... < 0 and f ′(x) = 2 logφ
φx+5

(
2√

5φx+2 − 1
)
<

0 for every x ≥ 1. As a consequence, g1,n(−φ) = φn+6f(n) < 0 for every n ≥ 1.

By the intermediate value theorem, we can conclude that g1,n(x) has a real zero x0 ∈
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(−2,−φ). Since none of the zeros of (x2 − x− 1)(x− 1) is in this interval, x0 must be

the real zero of p1,n(x) and the proof is completed.

Remark 4.6. It is worth noting that, for odd n, the sequence of real zeros of p1,n(x)

seems to increase monotonically to −φ, according to our numerical data which are

shown in Table 4.1. The fact that this sequence converges to −φ follows directly from

Theorem 4.11 below, yet we still cannot rigorously prove that it is monotone. This phe-

nomenon looks almost identical to that in the case of p0,n(x), except that the sequence

of their real zeros decreases monotonically from −1 to −φ (Garth, Mill & Mitchell,

2007). We also hypothesize from numerical results that Theorem 4.5 is true for any

pr,n(x).

Table 4.1 Real zeros of p1,n(x) for some odd n

n Real zero of p1,n(x)
1 −2
11 −1.7078955262722178552 . . .
111 −1.6273100491998780011 . . .
1111 −1.6189641192562181501 . . .

Conjecture 4.7. Let r ≥ 2 and n ∈ N∪{0}. If n is even, then pr,n(x) has no real zeros.

If n is odd, then pr,n(x) has a unique real zero, which lies in the interval [−r − 1,−φ).

Moreover, the sequence of real zeros of pr,n(x), with n odd, increases monotonically to

−φ.

One should be able to prove the first part of Conjecture 4.7 for some small values of

r > 1 with the aid of Proposition 4.2, Descartes’ rule of signs, and some suitable

manipulation. We give examples for the case r = 2 and r = 3 below. Locating the real

zeros of pr,n(x) for arbitrary r is a much harder problem and it definitely requires much

more delicate analysis.
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Example 4.8. By Proposition 4.2 with r = 2, we have

g2,1(x) = p2,1(x)(x
2 − x− 1)(x− 1)2

= x5 − 7x3 + 7x2 + 2x− 3, and for n ⩾ 2,

g2,n(x) = p2,n(x)(x
2 − x− 1)(x− 1)2

= xn+4 − (3F
(2)
n+1 − 2F (2)

n − F
(2)
n−1 + F

(2)
n−2)x

3 + (2F
(2)
n+1 + F (2)

n − F
(2)
n−1)x

2

+ (F
(2)
n+1 − F (2)

n )x− F
(2)
n+1.

Since F
(2)
n+1 − F

(2)
n > 0 and F

(2)
n+1 − F

(2)
n−1 > 0, we have

3F
(2)
n+1 − 2F (2)

n − F
(2)
n−1 + F

(2)
n−2 = 2F

(2)
n+1 − 2F (2)

n + F
(2)
n+1 − F

(2)
n−1 + F

(2)
n−2

= 2(F
(2)
n+1 − F (2)

n ) + (F
(2)
n+1 − F

(2)
n−1) + F

(2)
n−2 > 0

Similarly, we have 2F
(2)
n+1 + F

(2)
n − F

(2)
n−1 > 0 because F

(2)
n − F

(2)
n−1 > 0.

Since F (2)
n+1 ̸= 0, all roots of g2,n(x) must be nonzero. Assume first that n is even. Then

g2,n(−x) = xn+4 + (3F
(2)
n+1 − 2F (2)

n − F
(2)
n−1 + F

(2)
n−2)x

3 + (2F
(2)
n+1 + F (2)

n − F
(2)
n−1)x

2

− (F
(2)
n+1 − F (2)

n )x− F
(2)
n+1.

By Descartes’ rule of signs, we have that g2,n(x) has at most three positive real zeros

and exactly one negative real zero. Since (x2−x−1)(x−1)2 = (x−φ)(x−τ)(x−1)2,

where φ > 0 and τ < 0, we have that p2,n(x) has no real zeros.

On the other hand, suppose that n is odd. Then

g2,n(−x) = −xn+4 + (3F
(2)
n+1 − 2F (2)

n − F
(2)
n−1 + F

(2)
n−2)x

3 + (2F
(2)
n+1 + F (2)

n − F
(2)
n−1)x

2

− (F
(2)
n+1 − F (2)

n )x− F
(2)
n+1.

Therefore, Descartes’ rule of signs implies that g2,n(x) has exactly three positive real

zeros and two negative real zeros. Hence p2,n(x) must have a unique (negative) real

zero. Note that p2,1(x) = x+ 3 and p2,3(x) = x3 + 2x2 + 4x+ 7, whose real zeros are

−3 and −2.4645 . . ., respectively.
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Example 4.9. By Proposition 4.2 with r = 3, we have

g3,1(x) = p3,1(x)(x
2 − x− 1)(x− 1)3

= x6 − 11x4 + 19x3 − 6x2 − 7x+ 4,

g3,2(x) = p3,2(x)(x
2 − x− 1)(x− 1)3

= x7 − 25x4 + 49x3 − 18x2 − 18x+ 11, and for n ⩾ 3,

g3,n(x) = p3,n(x)(x
2 − x− 1)(x− 1)3

= xn+5 − (4F
(3)
n+1 − 5F (3)

n + F
(3)
n−1 + 2F

(3)
n−2 − F

(3)
n−3)x

4

+ (5F
(3)
n+1 − F (3)

n − 2F
(3)
n−1 + F

(3)
n−2)x

3 − (F
(3)
n+1 + 2F (3)

n − F
(3)
n−1)x

2

− (2F
(3)
n+1 − F (3)

n )x+ F
(3)
n+1.

Using Lemma 2.30, we have

4F
(3)
n+1 − 5F (3)

n + F
(3)
n−1 + 2F

(3)
n−2 − F

(3)
n−3 = 4(F

(3)
n+1 − F (3)

n )− F (3)
n + (F

(3)
n−1 + F

(3)
n−2)

+ F
(3)
n−2 − F

(3)
n−3

= 4

(
F

(3)
n−1 +

(
n+ 2

2

))
− F (3)

n +

(
F (3)
n −

(
n+ 1

2

))
+ F

(3)
n−2 − F

(3)
n−3

= 4F
(3)
n−1 + 4

(
n+ 2

2

)
−
(
n+ 1

2

)
+ F

(3)
n−2 − F

(3)
n−3

= 4F
(3)
n−1 + 3

(
n+ 2

2

)
+

((
n+ 2

2

)
−
(
n+ 1

2

))
+ F

(3)
n−2 − F

(3)
n−3 > 0

because
(
n+2
2

)
−
(
n+1
2

)
> 0 and F

(3)
n−2 − F

(3)
n−3 > 0. Next, we have

5F
(3)
n+1 − F (3)

n − 2F
(3)
n−1 + F

(3)
n−2 = F

(3)
n+1 − F (3)

n + 4F
(3)
n+1 − 2F

(3)
n−1 + F

(3)
n−2

= F
(3)
n+1 − F (3)

n + 2(2F
(3)
n+1 − F

(3)
n−1) + F

(3)
n−2 > 0

because F
(3)
n+1 − F

(3)
n > 0 and 2F

(3)
n+1 − F

(3)
n−1 > 0.

Finally, it is obvious that F (3)
n+1 + 2F

(3)
n − F

(3)
n−1 > 0 and 2F

(3)
n+1 − F

(3)
n > 0.
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Since F (3)
n+1 ̸= 0, all roots of g3,n(x) must be nonzero. Assume first that n is even. Then

g3,n(−x) = −xn+5 − (4F
(3)
n+1 − 5F (3)

n + F
(3)
n−1 + 2F

(3)
n−2 − F

(3)
n−3)x

4

− (5F
(3)
n+1 − F (3)

n − 2F
(3)
n−1 + F

(3)
n−2)x

3 − (F
(3)
n+1 + 2F (3)

n − F
(3)
n−1)x

2

+ (2F
(3)
n+1 − F (3)

n )x+ F
(3)
n+1.

By Descartes’ rule of signs, we have that g3,n(x) has at most four positive real zeros and

exactly one negative real zero. Since (x2 − x− 1)(x− 1)3 = (x− φ)(x− τ)(x− 1)3,

where φ > 0 and τ < 0, we have that p3,n(x) has no real zeros.

On the other hand, suppose that n is odd. Then

g3,n(−x) = xn+5 − (4F
(3)
n+1 − 5F (3)

n + F
(3)
n−1 + 2F

(3)
n−2 − F

(3)
n−3)x

4

− (5F
(3)
n+1 − F (3)

n − 2F
(3)
n−1 + F

(3)
n−2)x

3 − (F
(3)
n+1 + 2F (3)

n − F
(3)
n−1)x

2

+ (2F
(3)
n+1 − F (3)

n )x+ F
(3)
n+1.

Therefore, Descartes’ rule of signs implies that g3,n(x) has exactly four positive real

zeros and two negative real zeros. Hence p3,n(x) must have a unique (negative) real

zero. Note that p3,1(x) = x + 4 and p3,3(x) = x3 + 4x2 + 11x + 25, whose real zeros

are −4 and −3.0696 . . ., respectively.

Next, we turn our attention to the complex zeros of pr,n(x). Let us first recall a

known result about the zeros of p0,n(x), which is proven in (Garth et al., 2007).

Theorem 4.10. (Garth et al., 2007) The zeros of p0,n(x) approach φ in modulus as

n → ∞.

This theorem simply means the zeros of p0,n(x) get arbitrarily close to the circle |z| = φ

as n increases without bound, as visualized in Figure 4.1.
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Figure 4.1 The roots of p0,n(x), with n = 10 (purple), 50 (blue), 100 (green) and the
circle |z| = φ (red)

One might be tempted to ask whether the zeros of pr,n(x) have similar behavior for

r ≥ 1. It turns out that this is true at least for r = 1. As opposed to p0,n(x), the zeros of

p1,n(x) approach |z| = φ from outside of the circle, as shown in Figure 4.2.

Figure 4.2 The roots of p1,n(x), with n = 10 (purple), 50 (blue), 100 (green) and the
circle |z| = φ (red)
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Theorem 4.11. The zeros of p1,n(x) approach φ in modulus as n → ∞.

Proof. Recall from (4.6) that

g1,n(z) = (z2 − z − 1)(z − 1)p1,n(z) = zn+3 + F (1)
n z + F

(1)
n+1 − F

(1)
n+2z

2.

Assume first that |z| = c, where 1 < c < φ, and let Pn(z) = zn+3 + F
(1)
n z + F

(1)
n+1 and

Qn(z) = −F
(1)
n+2z

2. Since x2 − x− 1 = (x− φ)(x− τ) and the coefficients of p1,n(x)

are non-negative, it is easily seen that Pn(c) +Qn(c) = g1,n(c) < 0. Using the triangle

inequality, we have

|Pn(z)| ≤ Pn(c) < −Qn(c) = |Qn(z)|.

Hence g1,n(z) = Pn(z)+Qn(z) has the same number of zeros interior to |z| = c as does

Qn(z) by Rouché’s Theorem (Theorem2.24). Since Qn(z) has two (repeated) roots at

z = 0 and 1 and τ are zeros of g1,n(z) inside the circle |z| = c, it follows that p1,n(z)

has no zeros inside the circle |z| = c. Moreover, since c < φ is arbitrary, we have that

p1,n(z) has no zeros inside the circle |z| = φ.

Now suppose |z| = c > φ and let Pn(z) = −F
(1)
n+2z

2 + F
(1)
n z + F

(1)
n+1 and

Qn(z) = zn+3. By (4.4) and Binet’s formula, we have

|Pn(z)| ≤ F
(1)
n+2c

2 + F (1)
n c+ F

(1)
n+1

<

(
φn+4 − τn+4

√
5

)
c2 +

(
φn+2 − τn+2

√
5

)
c+

(
φn+3 − τn+3

√
5

)
.

Since c > φ > 1 and τ = −1/φ, we have that for any l ≥ 1

1

cn

(
φn+l − τn+l

√
5

)
→ 0 as n → ∞.

Therefore, for all sufficiently large n,

|Pn(z)| < cn+2 + cn+1 + cn < cn+3 = |Qn(z)|.

Then Rouché’s Theorem implies that all zeros of g1,n(z) = Pn(z) + Qn(z) are inside

the circle |z| = c for all sufficiently large n. Since the three zeros of (z2− z−1)(z−1)

are inside or on |z| = φ, all zeros of p1,n(z) are in the annulus φ < |z| < c for large

n. Since c > φ is arbitrary, we have that the zeros of p1,n(z) approach |z| = φ as

n → ∞.
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We have shown in Theorem 4.5 that for odd n the real zeros of p1,n(x) is in

the interval [−2,−φ). Theorem 4.11 gives more information about convergence of the

sequence of these zeros.

Corollary 4.12. The sequence of real zeros of p1,n(x), with n odd, converges to −φ.

Observing from graphs of zeros of pr,n(x) for different values of r and n (see Figures

4.3-4.5 below), we come up with the following conjecture.

Conjecture 4.13. For r ≥ 2, the zeros of pr,n(x) approach φ in modulus as n → ∞.

Figure 4.3 The roots of p2,n(x), with n = 10 (purple), 50 (blue), 100 (green) and the
circle |z| = φ (red)
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Figure 4.4 The roots of p5,n(x), with n = 10 (purple), 50 (blue), 100 (green) and the
circle |z| = φ (red)
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Figure 4.5 The roots of p10,n(x), with n = 10 (purple), 50 (blue), 100 (green) and the
circle |z| = φ (red)
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4.2 Mahler measures of reduced-coefficient hFCPs

Following ideas in Lemma 2.2 and Lemma 2.3 of (Garth et al., 2007) we shall

consider the Mahler measures of hFCPs whose coefficients are reduced modulo m with

residue classes being restricted to the interval [⌊−m
2
⌋ + 1, ⌊m

2
⌋]. We start by proving

the following result about periodicity of {F (1)
n } reduced modulo any positive integer m.

For any k ∈ Z and m ∈ N, we let [k]m denote the integer in [⌊−m
2
⌋+ 1, ⌊m

2
⌋] which is

congruent to k modulo m.

Theorem 4.14. Let m ∈ N. The sequence {[F (1)
n ]m}∞n=0 is periodic.

Proof. Consider the set {([F (1)
0 ]m, [F

(1)
1 ]m), ([F

(1)
1 ]m, [F

(1)
2 ]m), ([F

(1)
2 ]m, [F

(1)
3 ]m), . . .}.

Since there are totally m2 distinct pairs of elements from the complete residue system

modulo m, there exist 1 ≤ k < l such that ([F (1)
k ]m, [F

(1)
k+1]m) = ([F

(1)
l ]m, [F

(1)
l+1]m).

Hence it follows from (4.5) that

[F
(1)
k−1]m ≡ [F

(1)
k+1]m − [F

(1)
k ]m − 1 ≡ [F

(1)
l+1]m − [F

(1)
l ]m − 1 ≡ [F

(1)
l−1]m (mod m),

[F
(1)
k+2]m ≡ [F

(1)
k+1]m + [F

(1)
k ]m + 1 ≡ [F

(1)
l+1]m + [F

(1)
l ]m + 1 ≡ [F

(1)
l+2]m (mod m),

implying ([F
(1)
k−1]m, [F

(1)
k ]m) = ([F

(1)
l−1]m, [F

(1)
l ]m) and ([F

(1)
k+1]m, [F

(1)
k+2]m) = ([F

(1)
l+1]m, [F

(1)
l+2]m).

One can apply the same argument inductively to see that ([F (1)
0 ]m, [F

(1)
1 ]m) = ([F

(1)
p ]m, [F

(1)
p+1]m)

for some p ≥ 1 and [F
(1)
hp+j]m = [F

(1)
j ]m for every h ≥ 1 and 0 ≤ j ≤ p− 1.

If p is the smallest positive integer for which ([F
(1)
p ]m, [F

(1)
p+1]m) = ([F

(1)
0 ]m, [F

(1)
1 ]m),

then we call [F (1)
0 ]m, [F

(1)
1 ]m, . . . , [F

(1)
p−1]m the period of the sequence {[F (1)

n ]m}∞n=0.

Garth et al. showed that the Fibonacci sequence reduced modulo a Lucas number Ln

has two (simple) types of period, depending on the parity of n (Garth et al., 2017).

It can be shown that this is also the case for the hyperfibonacci sequence of the first

generation.

Proposition 4.15. If n ≥ 3 is odd, then the period of the hyperfibonacci sequence of

the first generation reduced modulo Ln, with residue classes adjusted to range between

⌊−Ln

2
⌋+ 1 and ⌊Ln

2
⌋, is

F2 − 1, F3 − 1, . . . , Fn − 1,−Fn−1 − 1, Fn−2 − 1, . . . , F1 − 1,−F0 − 1, 0.
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If n ≥ 8 is even, then the period of the hyperfibonacci sequence of the first generation

reduced modulo Ln, with residue classes adjusted as above, is

F2 − 1, F3 − 1, . . . , Fn − 1,−Fn−1 − 1, Fn−2 − 1, . . . , F2 − 1,−F1 − 1,

− (F0 + 1),−(F1 + 1), . . . ,−(Fn + 1), Fn−1 − 1,−Fn−2 − 1, . . . ,−F0 − 1, 0

Proof. Let n ≥ 3 be an odd integer. Using the well-known identity Ln = Fn+1 +Fn−1,

we have

Ln = Fn+1 + Fn−1 = Fn + Fn−1 + Fn−1

> Fn + Fn−1 + Fn−2 = 2Fn,

implying 0 ≤ Fl−1 ≤ Fn−1 < Fn < Ln

2
for any 2 ≤ l ≤ n. By (4.4), we immediately

have that the first n− 1 terms in the period are F2 − 1, F3 − 1, . . . , Fn − 1. The next n

terms in the period are obtained from (4.4) and the identity

Fn+k = FkLn + (−1)kFn−k, 1 ≤ k ≤ n,

which is proven in Lemma 2.2 of (Garth et al., 2017). Since 0 ≤ Fj < Fn < Ln

2
for

0 ≤ j ≤ n − 1, we have that ⌊−Ln

2
⌋ + 1 ≤ (−1)kFn−k − 1 ≤ ⌊Ln

2
⌋ for 1 ≤ k ≤ n.

Notice that F1 − 1 = 0 and −F0 − 1 = −1, so the next term in the period is 0 by (4.5).

By the same argument, the next two terms in the sequence reduced modulo Ln become

0 and 1, which repeat the initial terms of the period.

The case when n ≥ 8 is even can be verified in a similar manner by splitting the first

4n terms of the sequence into n − 1, n − 1, n + 1, and n + 1 terms, respectively, and

applying the following identities

F2n+k = Fn+kLn − Fk,

F3n+k = (F2n+k − Fk)Ln + (−1)k+1Fn−k, 1 ≤ k ≤ n,

which are given in Lemma 2.3 of (Garth et al., 2017).
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Remark 4.16. For n = 2, 4, and 6, there are minor discrepancies between the periods

of {F (1)
k }∞k=0 reduced modulo Ln and those in Proposition 4.14 for even n ≥ 8. Their

periods can be written explicitly as follows:

n = 2 : 0, 1,−1, 1, 1, 0,−1, 0,

n = 4 : 0, 1, 2,−3, 0,−2,−1,−2,−2,−3, 3, 1,−2, 0,−1, 0,

n = 6 : 0, 1, 2, 4, 7,−6, 2,−3, 0,−2,−1,−2,−2,−3,−4,−6, 9, 4,−4, 1,−2, 0,−1, 0.

For m ∈ N, we define p(m)
r,n (x) as the polynomial pr,n(x) whose coefficients are

reduced modulo m with residue classes adjusted to be in the interval [⌊−m
2
⌋+ 1, ⌊m

2
⌋].

In the next theorem, we obtain a result about Mahler measures of p
(m)
1,n (x), which is

identical to Theorem 4.1 in (Garth et al., 2017) and can be proven using the same

arguments.

Proposition 4.17. Let m ≥ 2 and let t be the length of the period of the hyperfibonacci

sequence of the first generation reduced modulo m. Then

M
(
p
(m)
1,nt−1(x)

)
= M

(
p
(m)
1,nt−2(x)

)
= M

(
p
(m)
1,t−2(x)

)
for every n ∈ N.

Proof. Let a1, . . . , at be the period of the hyperfibonacci sequence of the first generation

reduced modulo m. Then we have

p
(m)
1,t−2(x) = xt−2 + a3x

t−3 + · · ·+ at−1x+ at,

since a1 = 0 and a2 = 1. Let Cj(x) = xj + xj−1 + · · · + x + 1, where j ⩾ 1. We will

show that for every n ⩾ 1

p
(m)
1,nt−2(x) = p

(m)
1,t−2(x) · Cn−1(x

t).

For n = 1, the above equation is obvious.
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Let k ∈ N and suppose p
(m)
1,kt−2(x) = p

(m)
1,t−2(x) · Ck−1(x

t). Then

p
(m)
1,kt+t−2(x) = xkt+t−2 + a3x

kt+t−3 + a4x
kt+t−4 + · · ·+ at−2x

kt+2 + at−1x
kt+1 + atx

kt

+ a1x
kt−1 + a2x

kt−2 + a3x
kt−3 + · · ·+ at−1x

kt−t+1 + atx
kt−t

+ a1x
(k−1)t−1 + a2x

(k−1)t−2 + · · ·+ at−1x+ at

= xkt+t−2 + a3x
kt+t−3 + a4x

kt+t−4 + · · ·+ at−2x
kt+2 + at−1x

kt+1 + atx
kt

+ p
(m)
1,kt−2(x)

= xkt
(
xt−2 + a3x

t−3 + a4x
t−4 + · · ·+ at−2x

2 + at−1x+ at
)
+ p

(m)
1,kt−2(x)

= xkt
(
p
(m)
1,t−2(x)

)
+ p

(m)
1,kt−2(x)

= xkt
(
p
(m)
1,t−2(x)

)
+ Ck−1(x

t) · p(m)
1,t−2(x)

=
(
xkt + Ck−1(x

t)
)
· p(m)

1,t−2(x)

=
(
xkt + x(k−1)t + x(k−2)t + · · ·+ xt + 1

)
· p(m)

1,t−2(x)

= Ck(x
t) · p(m)

1,t−2(x).

Similarly, we have that for every n ∈ N

p
(m)
1,nt−1(x) = xp

(m)
1,t−2(x)Cn−1(x

t).

Since Mahler measure is multiplicative and the zeros of Cn−1(x
t) are roots of unity, the

desired result follows immediately.

The final result given in (Garth et al., 2017) is the following theorem:

Theorem 4.18. For n, l ∈ N, we have

M
(
p
(Ln)
0,2ln−2(x)

)
= M

(
p
(Ln)
0,2ln−1(x)

)
= φn−1.

Indeed, what Garth et al. proved is the following identity:

M
(
p
(Ln)
0,2n−2(x)

)
= φn−1 for every n ≥ 1, (4.7)

which results from Lemma 2.2 and Lemma 2.3 of (Garth et al., 2007) and some tricky

manipulation. The extended version in Theorem 4.18 is then just a consequence of

Theorem 4.1 of (Garth, Mills & Mitchell, 2007). One might expect to see a similar
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result for p(m)
r,n (x) with r ≥ 1. Unfortunately, this does not seem to be the case, even

for r = 1. The coefficients of p
(Ln)
0,k (x) are, up to sign, Fibonacci numbers, while

those of p(Ln)
1,k (x) have an extra term −1 by Proposition 4.15, which makes a significant

difference for Mahler measures. Note that (4.7) is equivalent to

M
(
p
(Ln+1)
0,2n

)
M
(
p
(Ln)
0,2n−2

) = φ for every n ≥ 1.

If we replace 0 with r ≥ 1, the quotient on the left-hand side is apparently not constant

as n varies. However, we propose here an interesting conjecture based on our numerical

results.

Conjecture 4.19. Let r ∈ N. The following convergence is valid:

lim
n→∞

M
(
p
(Ln+1)
r,2n

)
M
(
p
(Ln)
r,2n−2

) = φ.



CHAPTER 5

CONCLUSION AND DISCUSSION

In this chapter, we summarize the results about hFCPs that we obtain in this

thesis. First, we study various properties of hyper-Fibonacci numbers and hFCPs, as

stated in the first research objective. We prove that if n is even, then p1,n(x) has no

real zeros and if n is odd, then p1,n(x) has a unique real zero which lies in the inter-

val [−2,−φ). This result partially answers the problem stated in the second research

objective. Furthermore, we show that the complex zeros of p1,n(x) approach φ in mod-

ulus as n → ∞. This result explains the behavior of moduli of zeros of some hFCP’s

pr,n(x) for some r and large n and satisfies the third research objective. We also proved

that for m ∈ N the sequence {[F (1)
n ]m}∞n=0 obtained from {F (1)

n }∞n=0 using reduction

modulo m is periodic. This result satisfies our last research objective. Then we show

that the sequence {F (1)
k }∞k=1 reduced modulo m is periodic and it has simple periods

when m = Ln, as shown in Proposition 4.15. Finally, we consider Mahler measure of

p
(m)
1,n (x), which is obtained from p1,n(x) by reducing the coefficients modulo m. We

prove that for any m,n ∈ N with m ⩾ 2

M
(
p
(m)
1,nt−1(x)

)
= M

(
p
(m)
1,nt−2(x)

)
= M

(
p
(m)
1,t−2(x)

)
,

where t is the number of terms in one period of the hyper-Fibonacci sequence reduced

modulo m.

5.1 Suggestions

Although we succeed in proving many results about p1,n(x), several problems

remain open, especially for pr,n(x) with r > 1. These problems are stated in Conjec-

ture 4.7, Conjecture 4.13 and Conjecture 4.19. We firmly believe that it is not out of

reach to prove these conjectures for some small r > 1. For example, choosing r = 2

and 3, we are able to prove using Proposition 4.2 that pr,n(x) has no real zeros if n is

even and pr,n(x) has a unique real zero if n is odd. That said, we are still unable to find
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an easy way to prove our results in full generality.
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